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In this paper, we study the asymptotic behaviour of a parabolic optimal control problem in a domain
Ωε ⊂ Rn, whose boundary∂Ωε contains a highly oscillating part. We consider this problem with two
different classes of Dirichlet boundary controls, and, as a result, we provide its asymptotic analysis with
respect to the different topologies of homogenization. It is shown that the mathematical descriptions of
the homogenized optimal control problems have different forms and these differences appear not only in
the state equation and boundary conditions but also in the control constraints and the limit cost functional.
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1. Introduction

The aim of this paper is to study the asymptotic behaviour of the following class of the parabolic optimal
control problems:

Iε(uε, yε) =
∫ T

0

∫

Ω+
(yε − q0)

2 dx dt +
∫ T

0

∫

Γε

u2
ε dx′ dt → inf, (1.1)

y′
ε −1x yε + yε = fε, in (0, T)×Ωε,

∂ν yε = −εk0yε, on (0, T)× Sε,

yε = uε, on (0, T)× Γε,

∂ν yε = 0, on (0, T)× ∂Ωε \ (Γε ∪ Sε),

yε(0, x) = y0
ε a.e. x ∈ Ωε,






(1.2)
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as a small parameterε tends to zero. Here,Ωε ⊂ Rn denotes a thick multi-structure for which the
following representation holds true (see Fig.1 for 3D example):

Ωε = (B × (0, c))
⋃




⋃

k∈θε

(εC + εk)× (−d, 0]



 = Ω+
⋃




⋃

k∈θε

Gk
ε



 ,

whereB = (0,a)n−1 andC are bounded open smooth domains inRn−1 (n > 2), C ⊂⊂ (0, 1)n−1,
θε = {k = (k1, k2, . . . , kn−1) ∈ Nn−1: εC + εk ⊂⊂ B},

Ω = B × (−d, c), Gk
ε = {(x′, xn): x′ ∈ εC + εk,−d < xn 6 0},

Σ = B × {0}, Ω+ = B × (0, c), Ω− = B × (−d, 0), (1.3)

Γ0 = B × {−d}, Ω−
ε = Ωε ∩Ω−,

Γε is the union of the lower basesΓ k
ε = {(x′, xn): x′ ∈ εC + εk, xn = −d} of the thin cylinders

Gk
ε whenk ∈ θε (i.e. Γε = Γ0 ∩ ∂Ωε), Sε is the union of their boundaries along the axisOxn: Sk

ε =
{(x′, xn): x′ ∈ ε∂C + εk,−d < xn < 0}, k0 is a positive constant,∂ν = ∂/∂ν is the outward normal
derivative andq0 ∈ L2(0, T; L2(Ω+)), y0

ε ∈ L2(Ωε) and fε ∈ L2(0, T; L2(Ω)) are given functions. In
the sequel, we shall always assume thatε = a/N, whereN is a large positive integer. For this kind of
domains and boundary-value problems inΩε, we refer toBrizzi & Chalot (1997), Mel’nyk & Nazarov
(1994) andMel’nyk (2001).

We consider the optimal control problem (1.1), (1.2) assuming that there are two different classes of
admissible boundary controlsUa

ε (so-called regular controls) andUb
ε (so-called contrast controls) which

are realized via the Dirichlet boundary conditions posed on the lower basesΓε of the thin cylindersGk
ε ,

where

uε ∈ Ua
ε =

{
u|Γε : u ∈ L2(0, T; H1(Γ0)), ‖u‖L2(0,T;H1(Γ0))

6 C0

}
, (1.4)

uε ∈ Ub
ε =

{
u ∈ L2(0, T; H1(Γε)), ‖u‖L2(0,T;L2(Γε))

6 C0

}
. (1.5)

We denote the problems (1.1), (1.2), (1.4) and (1.1), (1.2), (1.5) by Pa
ε andPb

ε , respectively. It is well
known that the computational calculation of the optimal solutions of these problems is very complicated
through the singularities of the thick junctionsΩε. Therefore, the study of their asymptotic behaviour as

FIG. 1. Thick multi-structureΩε.
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the parameterε tends to zero is one of the main approach to the analysis of optimization problems in such
domains. As a rule it gives the possibility to replace the original problems by the corresponding limit
problems defined in a more ‘simpler’ domain with the preservation of the main variational property:
both optimal solution and minimal value of the cost functional for the original problem converge to the
corresponding characteristics of a limit optimal control problem asε tends to zero. So, our goal is to
obtain an appropriate asymptotical limit for the optimal control problemsPa

ε andPb
ε as the parameterε

tends to zero.
For comparison we note that the asymptotic analysis of an optimal control problem for linear elliptic

equations in the thick multi-structures withUa
ε -admissible boundary controls was given in the recent

work Kogut & Mel’nyk (2004). The optimal control problems for linear parabolic equations in the
same domains with unconstrained distributedL2-controls were studied byDe Maioet al. (2004). The
characteristic feature of considered optimal control problems is the fact that each of these problems has
a unique solution for everyε.

The optimal control problemsPa
ε andPb

ε we consider are such that the existence of an optimal solu-
tion for the control problemPb

ε must be taken as probable, but not certainly proved. This circumstance is
atypical for the overwhelming majority investigations in this field. We show that the result of homoge-
nization for these problems asε → 0, i.e. when the number of attached thin cylinders infinitely increases
and their thickness vanishes, essentially depends on the classes of admissible controls. Namely, let|C|
be the(n − 1)-dimensional Lebesgue measure of the setC, ṽε be the zero-extension toΩ of a function
v defined onΩε andχΩ+ andχΩ− be the characteristic functions of the setsΩ+ andΩ−, respectively.
Having assumed

ỹ 0
ε → (|C|χΩ− + χΩ+)y0 weakly inL2(Ω) asε → 0, (1.6)

f̃ε → (|C|χΩ− + χΩ+) f0 weakly inL2(0, T; L2(Ω)) asε → 0, (1.7)

we prove that for thePa
ε -problem there exists a unique homogenized one(Pa

hom) asε → 0 that can be
represented in the form

(y+)′ −1x y+ + y+ = f0, in (0, T)×Ω+,

(y−)′ − ∂2
xn

y− +
|C| + k0|∂C|H

|C|
y− = f0, in (0, T)×Ω−,

∂ν y+ = 0, in (0, T)× ∂Ω+ \Σ,

y− = u, on (0, T)× Γ0,

y+ = y−, ∂xn y+ = |C|∂xn y−, on (0, T)×Σ,

y(0, x) = y0(x), a.e. x ∈ Ω,






(1.8)

u ∈ Ua =
{
u ∈ L2(0, T; H1(Γ0)): ‖u‖L2(0,T;H1(Γ0))

6 C0

}
, (1.9)

Ia(u, y+, y−)=
∫ T

0

∫

Ω+
(y+ − q0)

2 dx dt + |C|
∫ T

0

∫

Γ0

u2 dx′ dt → inf, (1.10)
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whereas for the optimal control problemPb
ε the homogenized one(Pb

hom) has another analytical repre-
sentation

(y+)′ −1x y+ + y+ = f0, in (0, T)×Ω+,

(y−)′ − ∂2
xn

y− +
|C| + k0|∂C|H

|C|
y− = f0, in (0, T)×Ω−,

∂ν y+ = 0, in (0, T)× ∂Ω+ \Σ,

v−
0 = |C|−1u, on (0, T)× Γ0,

y+ = y−, ∂xn y+ = |C|∂xn y−, on (0, T)×Σ,

y(0, x) = y0(x), a.e. x ∈ Ω,






(1.11)

u ∈ Ub =
{
u ∈ L2((0, T)× Γ0): ‖u‖L2((0,T)×Γ0)

6
√

|C|C0

}
, (1.12)

Ib(u, y+, y−)=
∫ T

0

∫

Ω+
(y+ − q0)

2 dx dt +
1

|C|

∫ T

0

∫

Γ0

u2 dx′ dt → inf . (1.13)

Here byv+ andv− we denote the restrictions of a functionv: (0, T)×Ω → R to the sets(0, T)×Ω+

and(0, T)×Ω−, respectively.
The plan of this paper is as follows. In Section2, following the approach ofZhikov (2000), we give

the description of the Robin boundary conditions for the boundary-value problem (1.2) in terms of the
so-called singular measures and reformulate the original optimal control problems. We givea priori
norm estimate for their solutions and study also the solvability of such problems at a fixed value ofε.

In Section3, we deal with the question of definition of an appropriate topology for the homogeniza-
tion of the original optimal control problems (see Definitions3.3and3.4). We prove that any sequence
of admissible pairs for the corresponding problem is relatively compact with respect to the so-called
wa- andwb-convergence, respectively. Section4 is devoted to the definition of the homogenized prob-
lems and their main variational properties. In Section5, we establish the analytical representation for
the limit sets of admissible solutionsΞa andΞb. We show that each of these sets can be represented in
an explicit form (see Theorems5.1and5.2).

In Section6, we give the result of identification for the limit cost functionalsIa andIb. We show that
these functionals have different analytical representation and prove the main results of homogenization
for problemsPa

ε andPb
ε asε → 0.

2. On solvability of the original optimal control problems

We begin this section with the description of the geometry of the setSε in terms of a singular measure
in Rn (seeBouchitte & Fragala, 2001; Zhikov, 2000). Letμ0 be a periodic finite positive Borel measure
in Rn−1 with the torus of periodicity� = [0, 1)n−1. We assume that the Borel measureμ0 is the
probability measure, concentrated and uniformly distributed on the set∂C, so

∫
� dμ0 = 1.

REMARK 2.1 By definition we haveμ0(� \ ∂C) = 0. Therefore, any functions, taking the same values
on the manifold∂C, coincide as elements ofL2(�, dμ0). Here, the Lebesgue spaceL2(�, dμ0) is
defined in a usual way with the corresponding norm‖ f ‖2

L2(�,dμ0)
=
∫
� | f (x)|2 dμ0 (we adopt the

standard notationL2(�) whenμ0 is the Lebesgue measure).
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Now, we set�n = �× [0, 1) = [0, 1)n and consider the measure dμ = dμ0 × dxn in �n. It is easy
to see that this measure concentrated on the set∂C × [0, 1), and for any smooth functiong we have

∫

�n

g dμ =
∫ 1

0

∫

�
g dxn dμ0 = [Hn−1(∂C × [0, 1))]−1

∫

∂C×[0,1)
g dHn−1

(seeEvans & Gariepy, 1992). However,Hn−1(∂C × [0, 1)) = Hn−2(∂C). Then, using in the sequel the
notation|∂C|H = Hn−2(∂C), the previous relation can be rewritten in the form

∫

�n

g dμ =
∫ 1

0

∫

�
g dxn dμ0 = |∂C|−1

H

∫

∂C×(0,1)
g dHn−1. (2.1)

For instance, let us consider the plane thick multi-structureΩε ⊂ R2. Then,n = 2 and the setC is some
part of the segment(0, 1), e.g.C = {x1 ∈ (0, 1): |x1 −1/2| < h/2}, whereh ∈ (0, 1) is a fixed number.
So, in this case|∂C|H = 2 and the 1-periodic measureμ0 in R1 can be defined by the rule

μ0 =
1

|∂C|H

(
δM1 + δM2

)
=

1

2

(
δM1 + δM2

)
, whereMi =

1

2
+
(

i −
3

2

)
h, i = 1, 2.

Here byδMi we denote the Dirac measures located at the pointsMi . Thus, the multiplier|∂C|−1
H in (2.1)

is equal to 1/2.
LetΛ be any Borel set ofRn. We introduce the so-called ‘scaling’ measureμε by the ruleμε(Λ) =

εnμ(ε−1Λ). This measure has the periodε. Sinceμ(ε�n) = ε ∙ μ0(ε�) by definition ofμ, it follows
that

με(ε�n) = εn
∫ ε

0

∫

ε�
dμ0(x

′/ε)d(xn/ε) = εn
∫ 1

0

∫

�
dμ0 dxn = εn.

It means that the measureμε weakly converges to the Lebesgue measure inRn asε → 0 (in symbols
dμε ⇀ dx), i.e. limε→0

∫
Rn ϕ dμε =

∫
Rn ϕ dx for all functionsϕ ∈ C∞

0 (R
n) (seeZhikov, 2000).

Since the Sobolev spaceH1(Ωε) can be viewed as the closure ofC∞
0 (R

n) with respect to the

norm
( ∫
Ωε
(y2 + |∇y|2)dx

)2, it follows thatyε ∈ L2(0, T; H1(Ωε)) is the weak solution of the above-
mentioned problem whenever (seeLions, 1971)

∫ T

0

∫

Ωε

(−yεϕψ
′ + ∇yε ∙ ∇ϕψ + yεϕψ)dx dt + k0ε

∫ T

0

∫

Sε
yεϕψ dx′ dt

=
∫ T

0

∫

Ωε

fεϕψ dx dt, ∀ϕ ∈ C∞
0 (R

n;Γε), ∀ψ ∈ C∞
0 (0, T), (2.2)

where byC∞
0 (R

n;Γε) we denote the set of all functions ofC∞
0 (R

n) such thatϕ|Γε = 0.
Let us consider the last term in the left part of identity (2.2). Using the notations introduced above,

we may write down

k0ε

∫ T

0

∫

Sε
yεϕψ dx′ dt = k0ε

∫ T

0




Nn−1
∑

j =1

∫

ε(∂C+k j )

∫ 0

−d
yεϕ dHn−2 dxn



ψ dt

= k0ε|∂C|H

∫ T

0




Nn−1
∑

j =1

∫

ε(�+k j )

∫ 0

−d
ŷεϕε

n−2 dμ0(x
′/ε)dxn



ψ dt
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= k0|∂C|H

∫ T

0




Nn−1
∑

j =1

∫

ε(�+k j )

∫ 0

−d
ŷεϕε

n dμ0(x
′/ε)d(xn/ε)



ψ dt

= k0|∂C|H

∫ T

0




Nn−1
∑

j =1

∫

ε(�+k j )

∫ 0

−d
ŷεϕ dμε



ψ dt

= k0|∂C|H

∫ T

0

∫

Ω−
ŷεϕψ dμε dt.

Here byŷε we denote a function ofL2(0, T; L2(Ω−, dμε)) taking the same values withyε on the set
Sε. Note that the integral

∫
Ω− ŷεϕ dμε is well defined for every functionϕ ∈ C∞

0 (R
n;Γε). Indeed, since

the setΩ− is bounded and̂yε dμε is a Radon measure, it follows that
∫
Ω− ŷεϕ dμε is a linear continuous

functional onC∞
0 (R

n;Γε).
Let Xμε be the vector space of functionsyε ∈ L2(0, T; H1(Ωε)) such thatyε ∈ L2(0, T; L2(Ω−,

dμε)), i.e. for any functionyε ∈ Xμε the integral
∫ T

0

∫
Ω− y2

ε dμε is well defined. It is easy to see that
Xμε is the Hilbert space with respect to the following scalar product:

(yε, vε)Xμε =
∫ T

0

∫

Ωε

(∇yε ∙ ∇vε + yεvε)dx dt +
∫ T

0

∫

Ω−
yεvε dμε dt.

As a result of this motivation, we give the following variational formulation of the initial boundary-value
problem (1.2).

DEFINITION 2.1 We say that a functionyε = yε(uε) is a weak solution of the parabolic problem (1.2)
for a given functionuε ∈ L2(0, T; H1(Γε)) if

∫ T

0

∫

Ωε

(−yεϕψ
′ + ∇yε ∙ ∇ϕψ + yεϕψ)dx dt + k0|∂C|H

∫ T

0

∫

Ω−
yεϕψ dμε dt

=
∫ T

0

∫

Ωε

fεϕψ dx dt, (2.3)

yε ∈ Xμε , yε(0, x) = y0
ε a.e.x ∈ Ωε, yε|Γε = uε a.e.t ∈ (0, T), (2.4)

holds for everyϕ ∈ C∞
0 (R

n;Γε) andψ ∈ C∞
0 (0, T).

Then using the standard Hilbert space method, we have the following result.

PROPOSITION2.1 For any given functionuε ∈ L2(0, T; H1(Γε)), problem (1.2) admits a unique weak
solution in the sense of Definition2.1such that

y′
ε ∈ L2(0, T; (H1(Ωε))

′),

‖yε‖Xμε 6 c
(
‖ fε‖L2((0,T)×Ωε) + ‖uε‖L2(0,T;H1(Γε))

)
, ∀ ε > 0, (2.5)

where a constantc > 0 is independent ofε (seeLions, 1971).
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Now, we can return to the question on solvability of the optimal control problemsPa
ε andPb

ε . For
this, we rewrite the original problems as follows:

(Pa
ε ):

〈
inf

(uε,yε)∈Ξa
ε

Iε(uε, yε)

〉
, (Pb

ε):

〈

inf
(uε,yε)∈Ξb

ε

Iε(uε, yε)

〉

, (2.6)

where byΞa
ε andΞb

ε we denote the sets of admissible pairs for the corresponding control problems, i.e.

Ξ i
ε =






(uε, yε)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

uε ∈ Ui
ε, yε ∈ Xμε , yε|Γε = uε,

yε(0, x) = y0
ε a.e.x ∈ Ωε,

∫ T

0

∫

Ωε

(−yεϕψ
′ + ∇yε ∙ ∇ϕψ + yεϕψ)dx dt

+k0|∂C|H

∫ T

0

∫

Ω−
yεϕψ dμε dt =

∫ T

0

∫

Ωε

fεϕψ dx dt,

∀ϕ ∈ C∞
0 (R

n;Γε), ∀ψ ∈ C∞
0 (0, T)






, i = a, b. (2.7)

Using the direct method of the calculus of variations, it can be easily shown thatPa
ε -problem has

the unique solution for every valueε > 0: Iε(ua
ε , ya

ε ) = inf(uε,yε)∈Ξa
ε

Iε(uε, yε). As for thePb
ε -problem,

we observe that its set of admissible pairsΞb
ε is convex and closed inL2(0, T; H1(Ωε)) × Xμε , and

the cost functional (1.1) is strictly convex and lower semicontinuous with respect to the weak topol-
ogy of L2(0, T; H1(Ωε)) × L2(0, T; H1(Ωε)). Hence, we cannot assert the solvability of this prob-
lem in general, i.e. the existence of an optimal solution(ub

ε , yb
ε ) ∈ Ξb

ε for the Pb
ε -problem must be

taken as probable, but not certainly proved. However, if thePb
ε -problem is solvable, then its solution

is unique. Letτa
ε be the product of the weak topologies ofL2(0, T; H1(Γε)) and L2(0, T; H1(Ωε)),

andτb
ε be the product of the weak topologies ofL2(0, T; L2(Γε)) and L2(0, T; H1(Ωε)). Let us de-

note by clτb
ε
Ξb
ε the closure of the setΞb

ε with respect to theτb
ε -topology and consider the following

constrained minimization problem (so-calledτb
ε -relaxed problem for the optimal control problemPb

ε ):〈
inf(uε,yε)∈cl

τb
ε
Ξb
ε

Iε(uε, yε)
〉
. It is clear that this problem is solvable for everyε. Indeed, clτb

ε
Ξb
ε is a

convex, closed and bounded subset ofL2(0, T; L2(Γε))× Xμε , and Iε: L2(0, T; L2(Γε))× Xμε → R
is the strictly convexτb

ε -lower semicontinuous functional. This means that this problem has a unique
solution(u∗

ε , y∗
ε ) ∈ clτb

ε
Ξb
ε .

THEOREM 2.1 If (ub
ε , yb

ε ) is an optimal pair forPb
ε -problem, then(ub

ε , yb
ε ) is the unique solution of

τb
ε -relaxed problem.

Proof. Let ε be any fixed value (we recall thatε = a/N). SinceΞb
ε ⊂ clτb

ε
Ξb
ε , we have

inf
(uε,yε)∈cl

τb
ε
Ξb
ε

Iε(uε, yε) 6 inf
(uε,yε)∈Ξb

ε

Iε(uε, yε).

Let (u∗
ε , y∗

ε ) be a solution ofτb
ε -relaxed problem. Assume that

Iε(u
∗
ε , y∗

ε ) < inf
(uε,yε)∈Ξb

ε

Iε(uε, yε) = Iε(u
b
ε , yb

ε ) =: α. (2.8)
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It means that(u∗
ε , y∗

ε ) ∈ clτb
ε
Ξb
ε \ Ξb

ε . At the same time there exists a sequence of admissible pairs

{(uε,n, yε,n) ⊂ Ξb
ε : n ∈ N} such that(uε,n, yε,n)

τb
ε→ (u∗

ε , y∗
ε ). Obviously,

Iε(uε,n, yε,n) > inf
(uε,yε)∈Ξb

ε

Iε(uε, yε) = α, ∀ n ∈ N. (2.9)

By virtue of theτb
ε -lower semicontinuity property of the cost functionalIε, we just have lim infn→∞

Iε(uε,n, yε,n) > Iε(u∗
ε , y∗

ε ). Then taking into account relation (2.9), we conclude thatIε(u∗
ε , y∗

ε ) > α.
However, this contradicts inequality (2.8). As a result,

α = Iε(u
∗
ε , y∗

ε ) = inf
(uε,yε)∈cl

τb
ε
Ξb
ε

Iε(uε, yε),

i.e. (u∗
ε , y∗

ε ) ≡ (ub
ε , yb

ε ). �

3. Formalism of convergence in variable Banach spaces

It is clear thatΞa
ε ⊂ Ξb

ε , and these inclusions are strict for every fixedε. So, the problemsPa
ε andPb

ε
are drastically different from the control theory point of view. It means that the following inequality can
be held for everyε > 0:

Iε(u
a
ε , ya

ε ) = min
(uε,yε)∈Ξa

ε

Iε(uε, yε) > min
(uε,yε)∈Ξb

ε

Iε(uε, yε).

Hence, in the ‘limit’ asε tends to zero we can obtain one homogenized problem for the (a)-case and
another one for the (b)-case.

To study the asymptotic behaviour of the problemsPa
ε andPb

ε , we adopt the concept of the varia-
tional convergence of constrained minimization problems (seeAttouch, 1984; Buttazzo, 1993; Kogut &
Leugering, 2001). Then the homogenization procedure can be reduced to the limit analysis of the fol-
lowing sequences:

{〈
inf

(u,y)∈Ξa
ε

Iε(u, y)

〉
: ε → 0

}
,

{〈

inf
(u,y)∈Ξb

ε

Iε(u, y)

〉

: ε → 0

}

, (3.1)

where the cost functionalsIε: Ξ i
ε → R, i = a, b, and the corresponding sets of admissible pairs are

defined in (1.1) and (2.7), respectively.
Note that because of the specific construction of the domainsΩε, we have rather delicate situation

with the limit passage in (2.6) asε → 0. Indeed, each of the admissible pairs(uε, yε) belongs to the
corresponding space

Yε := L2(0, T; H1(Γε))× Xμε (3.2)

and this fact is common as forPa
ε -problem so forPb

ε -one. Therefore, we focus our attention in this
section on working up of the convergence formalism in such spaces.

3.1 The convergence concept forPa
ε -problems

Let {(uε, yε)}ε>0 be a sequence of pairs such thatuε ∈ Ua
ε , yε ∈ Xμε , ∀ ε > 0, and

lim sup
ε>0

‖yε‖
2
Xμε

= lim sup
ε>0

[∫ T

0

∫

Ωε

(|∇yε|
2 dx + y2

ε )dx dt +
∫ T

0

∫

Ω−
y2
ε dμε

]
< +∞.
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It is clear that any sequence of admissible pairs{(uε, yε) ∈ Ξa
ε }ε>0 satisfies these assumptions.

As the definition of the setsUa
ε indicates (see (1.4)), for everyε > 0 and for every control func-

tion uε ∈ Ua
ε there exists an extension operatorPε: L2(0, T; H1(Γε)) → L2(0, T; H1(Γ0)) such

that‖Pε(uε)‖L2(0,T;H1(Γ0))
6 C0. However, the weak limits of any two weakly convergent sequences

{P(1)ε (uε)}ε>0 and{P(2)ε (uε)}ε>0 are the same. Indeed, let us assume that

P(1)ε (uε) → u∗
1 andP(2)ε (uε) → u2 weakly inL2(0, T; H1(Γ0)).

Let χΓε be the characteristic function of the setΓε. SinceχΓε is theε �-periodic function, it follows
thatχΓε → |C| weakly-∗ in L2(B) asε → 0. Then passing to the limit in the integral identity

∫ T

0

∫

Γ0

χΓε P(1)ε (uε)ϕ(x)ψ(t)dx dt

=
∫ T

0

∫

Γ0

χΓε P(2)ε (uε)ϕ(x)ψ(t)dx dt, ∀ψ ∈ C∞
0 (0, T), ∀ϕ ∈ H1(Γ0),

asε tends to zero, we just conclude that

|C|
∫ T

0

∫

Γ0

u∗
1ϕ(x)ψ(t)dx dt = |C|

∫ T

0

∫

Γ0

u∗
2ϕ(x)ψ(t)dx dt, ∀ψ ∈ C∞

0 (0, T), ∀ϕ ∈ H1(Γ0).

Hence,u∗
1 = u∗

2 and we have obtained the required.
In view of this, we give the following definition.

DEFINITION 3.1 We say that a sequence of controls{uε ∈ L2(0, T; H1(Γε))}ε>0 is weakly con-
vergent to a functionu∗ with respect to the spaceL2(0, T; H1(Γ0)) if some sequence of its images
{Pε(uε)}ε>0 ⊂ L2(0, T; H1(Γ0)) converges tou∗ weakly inL2(0, T; H1(Γ0)).

As a consequence, we have the following result.

LEMMA 3.1 Any sequence of admissible controls{uε ∈ Ua
ε }ε>0 is relatively compact with respect to

the weak convergence introduced above. Moreover, its weak limitu∗ belongs to the setUa =
{
u ∈

L2(0, T; H1(Γ0))
∣
∣‖u‖L2(0,T;H1(Γ0))

6 C0
}
.

Now, we give the convergence formalism for the sequences of the type
{
yε ∈ Xμε

}
. By analogy with

Brizzi & Chalot (1997), we extend each of the functionyε by zero into the whole of domainΩ, namely,

ỹε(x) :=

{
yε(x), x ∈ Ωε,

0, x ∈ Ω \Ωε,
(3.3)

and introduce the following functions:y+
ε (x) = yε(x) if x ∈ Ω+ and ỹ−

ε (x) = ỹε(x) if x ∈ Ω−.
Thanks to the rectilinear boundaries ofSε with respect toxn, we have

∂xn(ỹ
−
ε ) = ˜∂xn(y

−
ε ) in Ω−. (3.4)

This means that̃y−
ε ∈ L2(0, T; W(0,1)

2 (Ω−)), whereW(0,1)
2 (Ω−) is the anisotropic Sobolev space{

v ∈ L2(Ω−): ∂xnv ∈ L2(Ω−)
}
.
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Let χC be the�-periodic characteristic function of the setC. It is easy to see thatχC(∙/ε) → |C|
weakly-∗ in L∞(B) asε → 0, whereB = (0,a)n−1 and |C| is the (n − 1)-dimensional Lebesgue
measure ofC. We recall also that (seeBrizzi & Chalot, 1997)

χΩ−
ε

→ |C| weakly-∗ in L∞(Ω−) asε → 0, (3.5)

χΩε∩Σ → |C| weakly-∗ in L∞(Σ) asε → 0, (3.6)

χΓε → |C| weakly-∗ in L∞(Γ0) asε → 0. (3.7)

DEFINITION 3.2 We say that a sequence
{
yε ∈ Xμε

}
ε>0 is weakly convergent to a functiony∗ =

(y+
∗ , y−

∗ ) (with respect to the spaceL2(0, T; H1(Ω+) × W(0,1)
2 (Ω−))) asε tends to zero (in symbols,

yε  y∗ = (y+
∗ , y−

∗ )) if:

(a) y+
ε → y+

∗ weakly inL2(0, T; H1(Ω+));

(b) ỹ−
ε → |C|y−

∗ weakly inL2(0, T; W(0,1)
2 (Ω−)).

To show the correctness of this definition, we prove the following compactness property.

PROPOSITION3.1 Let
{
yε ∈ Xμε

}
ε>0 be a bounded sequence. Then there exist a subsequence{yε′ }ε′>0

and a function

y0 = (y+
0 , y−

0 ) ∈ L2(0, T; H1(Ω+))× L2(0, T; W(0,1)
2 (Ω−))

such thatyε′  y0 = (y+
0 , y−

0 ).

Proof. In accordance with the initial assumptions, there exists a constantC > 0 independent ofε such
that‖yε‖Xμε 6 C. Hence,

‖y+
ε ‖L2(0,T;H1(Ω+)) + ‖ỹ−

ε ‖
L2(0,T;W(0,1)

2 (Ω−))
+ ‖yε‖L2(0,T;L2(Ω−,dμε)) 6 C.

Therefore, there exist a subsequence{ε′} of {ε} (still denoted byε) and elementsy+
0 ∈ L2(0, T; H1

(Ω+)), y−
0 ∈ L2(0, T; L2(Ω−)) andy∗ ∈ L2(0, T; L2(Ω−)) such that

y+
ε → y+

0 weakly inL2(0, T; H1(Ω+)),

ỹ−
ε → v =: |C|y−

0 weakly inL2(0, T; L2(Ω−)),

yε → y∗ weakly in the scaleL2(0, T; L2(Ω−, dμε)),

∂xn ỹ−
ε → |C|∂xn y−

0 weakly inL2(0, T; L2(Ω−)).






(3.8)

REMARK 3.1 Here, we have used the fact that the bounded sequence{yε}ε>0 is relatively compact with
respect to the weak convergence in{L2(0, T; L2(Ω−, dμε))}. Indeed, since lim supε→0

∫ T
0

∫
Ω−(yε)2

dμεdt < +∞, there exist a subsequence{ε′} of {ε} (still denoted byε) and an elementy∗ ∈ L2(0, T;
L2(Ω−)) such that (seeZhikov, 2000) limε→0

∫ T
0

∫
Ω− ϕψyε dμε dt =

∫ T
0

∫
Ω− ϕψy∗ dx dt for any

functionsϕ ∈ C∞
0 (R

n) andψ ∈ C∞
0 (R).

Note also that the last limit in (3.8) is the consequence of (3.4). Moreover, by analogy withBrizzi &
Chalot(1997) one can easily prove the following relation:

y+
0 = y−

0 a.e. on(0, T)×Σ, (3.9)

i.e. in this case the traces of the limit functions(y+
0 , y−

0 ) coincide onΣ .
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Obviously, to establish the factyε  (y+
0 , y−

0 ), it suffices to prove that

y∗ = y−
0 a.e. in(0, T)×Ω−. (3.10)

For this, we introduce some periodic finite Borel measureν on Rn. Let �n = [0, 1)n be the cell of
periodicity forν. Assume thatν is the probability measure, concentrated and uniformly distributed on
the setC × [0, 1), so

∫
�n

dν = 1. It is easy to see that for any smooth function, the equality
∫

�n

f dν = [Ln(C × [0, 1))]−1
∫

C×[0,1)
f dx = |C|−1

∫

C×[0,1)
f dx (3.11)

is valid. Now, define a scaling measureνε by the relationνε(A) = εnν(ε−1A), where A is an arbi-
trary Borel set inRn andε−1A = {ε−1x, x ∈ A}. Then the measureνε is ε-periodic, andνε(ε�) =
εn
∫
�n

dν = εn. Therefore, this measure weakly converges to the Lebesgue measure asε → 0, i.e.
limε→0

∫
Rn ϕ dνε =

∫
Rn ϕ dx for all ϕ ∈ C∞

0 (R
n). It means that the weak limits of both the sequences

{y−
ε ∈ L2(0, T; L2(Ω−, dμε))} and{y−

ε ∈ L2(0, T; L2(Ω−, dνε))} in the sense of Remark 4.1 have to
be the same, namely,

lim
ε→0

∫ T

0

∫

Ω−
ϕψy−

ε dμε dt =
∫ T

0

∫

Ω−
ϕψy∗ dx dt

= lim
ε→0

∫ T

0

∫

Ω−
ϕψy−

ε dνε dt. (3.12)

At the same time for every functionyε ∈ Xμε and every fixedε, the setΩ− can be covered by a
system of cubes with edgesε. We denote these cubes by the symbolsε(� + k j ). Then in accordance
with the definition of measureνε, we may write down

∫ T

0

∫

Ω−
ỹ−
ε ϕψ dx dt = |C|

∫ T

0

∑

j

∫

ε(�+k j )
y−
ε ϕψε

n dν(x/ε)dt

= |C|
∫ T

0

∫

Ω−
y−
ε ϕψ dνε dt, (3.13)

whereϕ ∈ C∞
0 (R

n) andψ ∈ C∞
0 (R). Now, using (3.13) and (3.12) and taking into account the fact that

ỹ−
ε → |C|y−

0 weakly inL2(0, T; L2(Ω−)) asε → 0, we obtain

∫ T

0

∫

Ω−
|C|y−

0 ϕψ dx dt = lim
ε→0

∫ T

0

∫

Ω−
ỹ−
ε ϕψ dx dt

= lim
ε→0

|C|
∫ T

0

∫

Ω−
y−
ε ϕψ dνε dt = |C|

∫ T

0

∫

Ω−
y∗ϕψ dxdt,

for all ϕ ∈ C∞
0 (R

n) andψ ∈ C∞
0 (R). Hence,y∗ = y−

0 and we obtain the required proposition. �

DEFINITION 3.3 We say that a sequence{(uε, yε) ∈ Yε}ε>0 is wa-convergent to a triplet(u, y+, y−)

asε tends to zero
(
in symbols,(uε, yε)

wa

→ (u, y+, y−)
)

if uε → u in the sense of Definition3.1 and
yε  (y+, y−) in the sense of Definition3.2(here the spaceYε is defined in (3.2)).
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As follows from the result obtained above and estimate (2.5) the following statement holds.

PROPOSITION3.2 Let {(uε, yε) ∈ Ξa
ε }ε>0 be any sequence of admissible pairs for theP̂a

ε -problem.
Then there exist a subsequence{(uε′ , yε′)}ε′>0 and a triplet

(u, y+, y−) ∈ Ya
0 := L2(0, T; H1(Γ0))× L2(0, T; H1(Ω+))× L2(0, T; W(0,1)

2 (Ω−)) (3.14)

such thatu ∈ Ua and(uε′ , yε′)
wa

→ (u, y+, y−), where

Ua =
{
u ∈ L2(0, T; H1(Γ0))

∣
∣‖u‖L2(0,T;H1(Γ0))

6 C0

}
. (3.15)

3.2 The convergence concept forPb
ε -problems

Let {(uε, yε)}ε>0 be any sequence of admissible pairs forPb
ε -problems. Since we cannot assert in this

case the existence of extension operatorsPε: Ub
ε → L2(0, T; H1(Γ0)) that would be uniformly bounded

with respect toε, it follows that we have to give another convergence concept in the variable space
(3.2). Let us denote bỹuε the extension by zero of a functionuε ∈ L2(0, T; H1(Γε)) into Γ0. Then
ũε ∈ L2(0, T; L2(Γ0)).

DEFINITION 3.4 A sequence
{
(uε, yε) ∈ L2(0, T; H1(Γε)) × Xμε

}
ε>0 is said to bewb-convergent

to a triplet(u, y+, y−)
(
in symbols,(uε, yε)

wb

→ (u, y+, y−)
)

asε tends to zero if̃uε → u weakly in
L2(0, T; L2(Γ0)) andyε  (y+, y−) in the sense of Definition3.3.

Then, taking the definition of the setsUb
ε , estimate (2.5) and Proposition3.1 into account, we have

the following obvious result.

PROPOSITION3.3 Let{(uε, yε) ∈ Ξb
ε }ε>0 be a sequence of admissible pairs for thePb

ε -problems such
that supε>0 ‖yε‖Xμε < +∞. Then there exist a subsequence{(uε′ , yε′)}ε′>0 and a triplet

(u, y+, y−) ∈ Yb
0 := L2(0, T; L2(Γ0))× L2(0, T; H1(Ω+))× L2(0, T; W(0,1)

2 (Ω−)) (3.16)

for which (uε′ , yε′)
wb

→ (u, y+, y−) asε′ → 0.

Let us denote byτa the topology associated withwa-convergence inYa
0 and byτb the topology

associated withwb-convergence inYb
0. Then as follows from Propositions3.2and3.3, these topologies

can be taken as the most natural ones for the homogenization of the optimal control problemsPa
ε and

Pb
ε , respectively.

4. Definition of the homogenized problems and their properties

As follows from the previous sections, each of the sets of admissible solutionsΞ i
ε (i = a, b) belongs to

the corresponding Banach space (Ξ i
ε ⊂ Yε). We introduce the convergence concept of such sets using

thewi -sequential version of the set convergence in Kuratowski’s sense (seePankov, 1997; hereinafter
i = a, b).

DEFINITION 4.1 We say that a setΞi ⊂ Yi
0 is the sequentialwi -limit in the Kuratowski’s sense (or

K (wi )-limit) of the sequence{Ξ i
ε ⊂ Yε}ε>0 if the following conditions are satisfied:
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1. for every triplet(u, y+, y−) ∈ Ξi , there exist a sequence{(uε, yε)}ε>0 w
i -converging to(u, y+,

y−) and a positive valueε0 > 0 such that(uε, yε) ∈ Ξ i
ε for everyε ∈ (0, ε0);

2. for every sequence of admissible pairs{(uk, yk) ∈ Ξ i
εk

}k∈N such thatεk → 0 and(uk, yk)
wi

→
(u, y+, y−) ask → ∞, the triplet(u, y+, y−) belongs toΞi .

Let us show that the sets of admissible pairs for thePa
ε -problems possess the compactness property

with respect to theK (wa)-convergence.

THEOREM4.1 For the sequence of sets{Ξa
ε }ε>0, there exist a subsequence{Ξa

ε′ }ε′>0 and a setΞa ⊂ Ya
0

such thatK (wa)− limε′→0Ξ
a
ε′ = Ξa.

Proof. We begin with the obvious fact that thewa-convergence of any sequence of admissible pairs
{(uε, yε) ∈ Ξa

ε }ε>0 is equivalent to the weak convergence of its image{(Pε(uε), y+
ε , ỹ−

ε )}ε>0 in the

spaceYa
0 = L2(0, T; H1(Γ0)) × L2(0, T; H1(Ω+)) × L2(0, T; W(0,1)

2 (Ω−)). Since the spaceYa
0 is

separable and reflexive, there exists a metricd such that for any sequence{pk = (wk, yk, vk)}k∈N in Ya
0

the following conditions are equivalent (see, e.g.Dunford & Schwartz, 1957):
(j) {pk}→p = (w, y, v) weakly inYa

0; (jj) {pk} is bounded inYa
0 andd(pk, p) → 0 ask → ∞.

Let η be the topology associated to the metricd onYa
0 and{Ξ̃a

ε }ε>0 be the image sequence of the sets
Ξa
ε in Ya

0, i.e.Ξ̃a
ε = {(Pε(uε), y+

ε , ỹ−
ε ) : (uε, yε) ∈ Ξa

ε }.
Since theη-topology has a countable base, by the Kuratowski compactness theorem (seeDal Maso,

1993) there exists a subsequence of{Ξ̃a
ε }ε>0 still denoted by{Ξ̃a

ε }ε>0 that K (η)-converges to a set
A ⊂ Ya

0. Now, we prove that the setA coincides withK (wa)-limit of the family {Ξa
ε }ε>0. With this

aim, it is enough to show that

Ξa ⊆ A, (4.1)

A ⊆ Ξa, (4.2)

where byΞa we denoted theK (wa)-limit of the sequence{Ξa
ε }ε>0 in the sense of Definition4.1.

First, let us verify inclusion (4.1). Let (u, y+, y−) be any triplet inYa
0 for which one can found a

sequence{(uk, yk)}k∈N, wa-converging to(u, y+, y−), and a subsequence{εk}k∈N such that(uk, yk) ∈
Ξa
εk

for everyk ∈ N. Then(u, y+, y−) ∈ Ξa
0 by Definition 4.1. Let {Pk} be any sequence of the ex-

tension operatorsPk: L2(0, T; H1(Γε)) → L2(0, T; H1(Γ0)). Then{(Pkuk, y+
k , ỹ−

k )} → (u, y+, y−)

weakly inYa
0, and(Pkuk, y+

k , ỹ−
k ) ∈ Ξ̃a

εk
for everyk ∈ N. Therefore, the equivalence between condi-

tions (j) and (jj) yieldsη-convergence of{(Pkuk, y+
k , ỹ−

k )} to (u, y+, y−). Hence,(u, y+, y−) ∈ A by
definition of Kuratowski’s limit. So, inclusion (4.1) is proved.

Now we verify (4.2). Let (u, y+, y−) be any triplet ofA. Then there exists a sequence{(vε, pε,
qε)}ε>0 η-converging to(u, y+, y−) such that(vε, pε,qε) ∈ Ξ̃ε for ε small enough. It follows that each
pair (pε,qε) can be represented aspε = y+

ε , qε = ỹ−
ε , whereyε is a weak solution of the boundary-

value problem (1.2) underuε = vε|Γε . However, the realization of the condition(vε, pε,qε) ∈ Ξ̃ε
implies that the pair(uε, yε) is admissible, i.e.(uε, yε) ∈ Ξa

ε . Since the sequence of functions{vε}
is bounded inL2(0, T; H1(Γ0)) (vε ∈ Ua by definition of the sets̃Ξε), we get that the sequence of
corresponding solutions{(pε,qε)}ε>0 is bounded inL2(0, T; H1(Ω+)) × L2(0, T; W(0,1)

2 (Ω−)) as
well. Hence, the equivalence between conditions (j) and (jj) yields the weak convergence of the sequence
{(vε, pε,qε)}ε>0 to (u, y+, y−). But in view of Definition3.3, it is equivalent to thewa-convergence of
its prototype{(uε, yε)}ε>0 to (u, y+, y−). Thus,(u, y+, y−) ∈ Ξa by Definition4.1. Thus, the theorem
is proved. �
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DEFINITION 4.2 We say thatPb
ε -problem satisfies the property (N ) if for any

u ∈ Ub =
{
v ∈ L2((0, T)× Γ0): ‖v‖L2((0,T)×Γ0)

6
√

|C|C0

}

there exists a sequence{uε ∈ Ub
ε }ε>0 such that̃uε → u weakly in L2((0, T) × Γ0) and supε>0

‖uε‖L2(0,T;H1(Γε))
< +∞.

Then the following compactness property for the setsΞb
e with respect to theK (wb)-convergence

takes place.

THEOREM 4.2 If Pb
ε -problem possesses the (N )-property, then the sequence of the sets{Ξb

ε ∈ Yε}ε>0
has a subsequence (still denoted byε) for which the exists a non-empty setΞb ⊂ Yb

0 which is the
K (wb)-limit of {Ξb

ε }ε>0 with respect to the spaceYb
0.

REMARK 4.1 It is well known (seeDal Maso, 1993) that the Kuratowski’s limitA0 of a sequence
of subsets{An}n∈N in a topological space(X, τ ) does not change if we replace the setsAn by their
τ -closures, i.e.

K (τ )− lim
n→∞

An = A0 = K (τ )− lim
n→∞

clτ An

(τb
ε denotes the product of the weak topologies of the spacesL2(0, T; L2(Γε)) andL2(0, T; H1(Ωε))).

Thus, theK (wb)-limit of {Ξb
ε }ε>0 coincides with theK (wb)-limit of τb

ε -closures
{
clτb

ε
Ξb
ε ⊂ L2(0, T;

L2(Γε))× Xμε
}
.

Let us turn back to the main object of this section, namely, to the sequences of constrained mini-
mization problems (3.1). Using the concept of variational convergence (seeKogut & Leugering, 2001)
we give the definition of the ‘appropriate limits’ for these sequences.

DEFINITION 4.3 We say that the minimization problem
〈

inf
(u,y+,y−)∈Ξi

I i (u, y+, y−)

〉
(i = a, b), (4.3)

whereΞi ⊂ Yi
0, is the variationalwi -limit of the sequence (3.1) with respect to thewi -convergence if:

(i) Ξi is the K (wi )-limit of the sets{Ξ i
ε}; (ii) for any triplet (u, y+, y−) ∈ Ξi and for any sequence

{
(uk, yk) ∈ Ξ i

εk

}
k∈N such thatεk → 0 and(uk, yk)

wi

=⇒ (u, y+, y−) ask → ∞, we have

Ii (u, y+, y−) 6 lim inf
k→∞

Iεk(uk, yk); (4.4)

(iii) for every triplet (u, y+, y−) ∈ Ξi , there exist a positive constantε0 and a sequence{(uε, yε)}ε>0
such that

(uε, yε) ∈ Ξ i
ε for everyε 6 ε0; (uε, yε)

wi

=⇒ (u, y+, y−); Ii (u, y+, y−) > lim sup
ε→0

Iε(uε, yε). (4.5)

REMARK 4.2 In fact, Definition4.3is the natural extension of the well-known notion ofΓ -convergence.
We will prove that the variationalwi -convergence of the corresponding sequence (3.1) to problem (4.3)
implies the convergence of the minimum values ofIε onΞ i

ε to the minimum one ofIi onΞi ; in addition
everywi -cluster ‘point’ of the sequence of the minimizers forIε is the minimizer forIi .
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THEOREM 4.3 Assume that the constrained minimization problem
〈

inf
(u,y+,y−)∈Ξa

Ia(u, y+, y−)

〉
(4.6)

is the variationalwa-limit of the corresponding sequence (3.1) and this problem has a unique solution
(ua, (ya)+, (ya)−) in Ξa. Let {(ua

ε , ya
ε ) ∈ Ξa

ε }ε>0 be a sequence of the optimal pairs forPa
ε -problem.

Then

(ua
ε , ya

ε )
wa

→ (ua, (ya)+, (ya)−) asε → 0, (4.7)

and furthermore

inf
(u,y+,y−)∈Ξa

Ia(u, y+, y−) = Ia(u
a, (ya)+, (ya)−) = lim

ε→0
Iε(u

a
ε , ya

ε ). (4.8)

Proof. Let
{(

ua
εk
, ya
εk

)
∈ Ξa

εk

}
k∈N be anywa-convergent subsequence of the sequence of minimizers

{(ua
ε , ya

ε )}ε>0.Note that in view of Proposition3.2such choice is always possible. Let(u∗, (y∗)+, (y∗)−)
be itswa-limit. Then, by Definition4.1, we have(u∗, (y∗)+, (y∗)−) ∈ Ξa. Moreover, due to part (ii) of
Definition4.3,

lim inf
k→∞

min
(u,y)∈Ξa

εk

Iεk(u, y)= lim inf
k→∞

Iεk

(
ua
εk
, ya
εk

)
> Ia(u

∗, (y∗)+, (y∗)−)

> min
(u,y+,y−)∈Ξa

Ia(u, y+, y−) = Ia(u
a, (ya)+, (ya)−), (4.9)

where(ua, (ya)+, (ya)−) ∈ Ξa is the unique solution of the limit problem (4.6).
As follows from Definition4.3 (see (iii)) there exist a constantε0 > 0 and a sequence{(ua

ε , ya
ε )}

such that(ua
ε , ya

ε ) ∈ Ξa
ε for all valuesε ∈ (0, ε0), (ua

ε , ya
ε )

wa

→ (ua, (ya)+, (ya)−) asε → 0 and
Ia(ua, (ya)+, (ya)−) > lim supε→0 Iε(uε, yε). Using this fact, we get

min
(u,y+,y−)∈Ξa

Ia(u, y+, y−)= Ia(u
a, (ya)+, (ya)−) > lim sup

ε→0
Iε(uε, yε)

> lim sup
ε→0

min
(u,y)∈Ξa

ε

Iε(u, y) > lim sup
k→∞

min
(u,y)∈Ξa

εk

Iεk(u, y)

= lim sup
k→∞

Iεk(u
a
εk
, ya
εk
). (4.10)

From (4.9) it follows that lim infk→∞ Iεk

(
ua
εk
, ya
εk

)
> lim supk→∞ Iεk

(
ua
εk
, ya
εk

)
. Combining (4.9) and

(4.10), we conclude thatIa(ua, (ya)+, (ya)−) = limk→∞ min(u,y)∈Ξa
εk

Iεk(u, y) and

Ia(u
∗, (y∗)+, (y∗)−) = Ia(u

a, (ya)+, (ya)−) = min
(u,y+,y−)∈Ξa

Ia(u, y+, y−).

Taking into account these relations and the uniqueness of the solution to problem (4.3), we
obtain (u∗, (y∗)+, (y∗)−) = (ua, (ya)+, (ya)−). Since this equality holds for the limits of any con-
verging subsequences of{(ua

ε , ya
ε )}ε>0, it yields that (ua, (ya)+, (ya)−) is thewa-limit of the se-

quence{(ua
ε , ya

ε )}ε>0. Making for the sequence of minimizers what we did before with the subsequence
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{(
ua
εk
, ya
εk

)}
k∈N, we obtain

lim inf
ε→0

min
(u,y)∈Ξa

ε

Iε(u, y)= lim inf
ε→0

Iε(u
a
ε , ya

ε ) > Ia(u
a, (ya)+, (ya)−)

= min
(u,y+,y−)∈Ξa

Ia(u, y+, y−) > lim sup
ε→0

Iε(uε, yε) > lim sup
ε→0

min
(u,y)∈Ξa

ε

Iε(u, y)

= lim sup
ε→0

Iε(u
a
ε , ya

ε ).

Thus, the relations (4.8) hold. �

Using the same arguments and taking into account the (N )-property, one can prove the analogous
result for the variationalwb-limits.

THEOREM 4.4 Assume that the constrained minimization problem
〈

inf
(u,y+,y−)∈Ξb

Ib(u, y+, y−)

〉
(4.11)

is the variationalwb-limit of the corresponding sequence (3.1) and this problem has a unique solution
(ub, (yb)+, (yb)−) ∈ Ξb ⊂ Yb

0. Let {(ub
ε , yb

ε ) ∈ Ξb
ε }ε>0 be a sequence of optimal pairs ofPb

ε -problems

such that supε>0 ‖yb
ε ‖Xμε < +∞. Then(ub

ε , yb
ε )

wb

→ (ub, (yb)+, (yb)−) asε → 0, and furthermore

inf
(u,y+,y−)∈Ξb

Ib(u, y+, y−) = Ib(u
b, (yb)+, (yb)−) = lim

ε→0
Iε(u

b
ε , yb

ε ).

DEFINITION 4.4 We say that the family of optimal control problems{Pi
ε}ε>0 (i = a, b) admits the

homogenization asε → 0 with respect to thewi -convergence if for the corresponding sequence of
constrained minimization problems (3.1), there exists a variational limit which can be represented in the
form of some optimal control problem. This problem will be called the homogenized one forPi

ε.

5. Analytical representation of the limit sets of admissible solutions

The main objects of our consideration in this section are the sequences of the sets of admissible pairs
{Ξa

e ⊂ Yε}ε>0 and{Ξb
e ⊂ Yε}ε>0 and its Kuratowski’s limits with respect towa- andwb -convergence,

respectively. In view of Theorems4.1and4.2, we may always suppose that for that sequences there exist
setsΞa andΞb such thatΞa = K (wa)− limε→0Ξ

a
e andΞb = K (wb)− limε→0Ξ

b
e . To formulate our

next results, we introduce the following spaceV(Ω) =
{
y ∈ L2(Ω): ∂y

∂xn
∈ L2(Ω−), y ∈ H1(Ω+)

}

and endow it with the scalar product

(y, v)V(Ω) =
∫

Ω+
∇y ∙ ∇v dx +

∫

Ω+
yv dx + |C|

∫

Ω−
∂xn y∂xnv dx + (|C| + k0|∂C|H )

∫

Ω−
yv dx.

By analogy withEspositoet al. (1997), it can easily be shown thatV(Ω) is a Hilbert space andH1(Ω)
is dense inV(Ω). Moreover, as follows from (3.8–3.9), for any functiony∗ = (y+

∗ , y−
∗ ), which is a weak

limit in the sense of Definition3.2, we have (1)y∗ = (y+
∗ , y−

∗ ) ∈ L2(0, T;V(Ω)) and (2)y+
∗ (∙, ∙) =

y−
∗ (∙, ∙) almost everywhere on(0, T) × Σ . Moreover, it should be stressed here that any function of
V(Ω) has a trace on any hyperplaneL in Ω− such thatL = {(x′, xn) ∈ Ω−: xn = constant}.
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5.1 Recovery of the setΞa

The crucial point in the study of theK (wa)-limit properties for the sequence of admissible pairs is the
following result.

LEMMA 5.1 Let {uε}ε>0 be any sequence of admissible controls forPa
ε -problems which is weakly

convergent to a functionu0 in L2(0, T; H1(Γ0)). Let
{
yε ∈ Xμε

}
be the corresponding solutions of

problem (1.2). Then(uε, yε)
wa

→ (u0, v
+
0 , v

−
0 ) asε → 0, where

v0(x) =

{
v+

0 (x), x ∈ Ω+,

v−
0 (x), x ∈ Ω−,

(5.1)

is a unique weak solution inL2(0, T;V(Ω)) of the following limit problem:

(v+
0 )

′ −1xv
+
0 + v+

0 = f0, in (0, T)×Ω+,

(v−
0 )

′ − ∂2
xn
v−

0 +
|C| + k0|∂C|H

|C|
v−

0 = f0, in (0, T)×Ω−,

∂νv
+
0 = 0, in (0, T)× ∂Ω+ \Σ,

v−
0 = u0, on (0, T)× Γ0,

v+
0 = v−

0 , ∂xnv
+
0 = |C|∂xnv

−
0 , on (0, T)×Σ,

v0(0, x) = y0(x), a.e.x ∈ Ω.






(5.2)

REMARK 5.1 Here, the weak formulation of problem (5.2) means that

v0 ∈ L2(0, T;V(Ω)),

−
∫ T

0

∫

Ω
(χΩ+ + |C|χΩ−)v0ϕψ

′ dx dt +
∫ T

0
(v0, ϕ)V(Ω)ψ dt

=
∫ T

0

∫

Ω
(χΩ+ + |C|χΩ−) f0ϕψ dx dt, ∀ϕ ∈ V(Ω;Γ0),

∀ψ ∈ C∞
0 (0, T),

v−
0 = u0 on (0, T)× Γ0, v0(0, x) = y0(x) a.e.x ∈ Ω,






(5.3)

where

V(Ω;Γ0) =
{
v ∈ L2(Ω): ∂xnv ∈ L2(Ω−), v ∈ H1(Ω+), v = 0 a.e. onΓ0

}
.

Moreover, in this case we havev′
0 ∈ L2(0, T; (V(Ω))′) (seeLions, 1971, p. 107).

Proof. From Proposition3.1, it follows that there exist a subsequence{ε′} of {ε} (still denoted by{ε})

and a triplet(u0, v
+
0 , v

−
0 ) ∈ Ya

0 such that(uε, yε)
wa

→ (u0, v
+
0 , v

−
0 ) asε → 0. Similar to the proof of
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Proposition3.1(see relations (3.8) and (3.9)), we can show that

y+
ε → v+

0 weakly inL2(0, T; H1(Ω+)),

ỹ−
ε → |C|v−

0 weakly inL2(0, T; L2(Ω−)),

v+
0 = v−

0 , ∂xnv
+
0 = |C|∂xnv

−
0 , a.e. on(0, T)×Σ,

y−
ε → v−

0 weakly in{L2(0, T; L2(Ω−, dμε))}.






(5.4)

Moreover, there exist functionsγi ∈ L2(0, T; L2(Ω−)) (i = 1, . . . , n − 1) such that

∇̃x y−
ε → (γ1, . . . , γn−1, |C|∂v−

0 /∂xn) weakly in [L2(0, T; L2(Ω−))]n. (5.5)

Let us prove that the functionv−
0 satisfies the following boundary condition:

v−
0 = u0 almost everywhere on(0, T)× Γ0. (5.6)

We note that any functionf ∈ V(Ω) has a tracef |Γ0 ∈ L2(Γ0) (seeBrizzi & Chalot, 1997), so the
equality (5.6) has a sense. It is easy to see that the following statements hold:

ỹ−
ε = χΓε Pε(uε), a.e. on(0, T)× Γ0, ∀ ε > 0, (5.7)

χΓε Pε(uε) → |C|u0 weakly inL2((0, T)× Γ0) (5.8)

(as product of strongly and weakly convergent sequences). Then from the integral identity
∫ T

0

∫

Γ0

ỹ−
ε ϕψ dx′ dt = −

∫ T

0

∫

Ω−
∂ ỹ−
ε /∂xnϕψ dx dt

−
∫ T

0

∫

Ω−
ỹ−
ε ∂ψ/∂xnϕ dx dt,

∀ϕ ∈ C∞
0 (R

n; ∂Ω− \ Γ0), ∀ψ ∈ C∞
0 (R), (5.9)

whereC∞
0 (R

n; ∂Ω− \ Γ0) = {ϕ ∈ C∞
0 (R

n): ϕ = 0 on∂Ω− \ Γ0}, we immediately get(ỹ−
ε )|Γ0 →

|C|(v−
0 )|Γ0 weakly in L2((0, T) × Γ0). Thus, passing to the limit in (5.7) asε → 0, we obtain the

required relation (5.6).
Now, let us show that the functionv0 is the unique weak solution of problem (5.2). With this aim,

we rewrite the integral identity (2.3) as follows:

−
∫ T

0

∫

Ω+
y+
ε ϕψ

′ dx dt −
∫ T

0

∫

Ω−
ỹ−
ε ϕψ

′ dx dt +
∫ T

0

∫

Ω+
∇y+

ε ∙ ∇ϕψ dx dt

+
∫ T

0

∫

Ω−
∇̃y−

ε ∙ ∇ϕψ dx dt +
∫ T

0

∫

Ω+
y+
ε ϕψ dx dt

+
∫ T

0

∫

Ω−
ỹ−
ε ϕψ dx dt + k0|∂C|H

∫ T

0

∫

Ω−
y−
ε ϕψ dμε dt

=
∫ T

0

∫

Ω+
fεϕψ dx dt +

∫ T

0

∫

Ω−
χΩ−

ε
fεϕψ dx dt. (5.10)
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Passing to the limit in (5.10) asε → 0 and using the properties (3.5), (5.4) and (5.5), we get

−
∫ T

0

∫

Ω+
v+

0 ϕψ
′ dx dt − |C|

∫ T

0

∫

Ω−
v−

0 ϕψ
′ dx dt +

∫ T

0

∫

Ω+
∇v+

0 ∙ ∇ϕψ dx dt

+
∫ T

0

∫

Ω−

n−1∑

i =1

γi (∂ϕ/∂xi )ψ dx dt + |C|
∫ T

0

∫

Ω−
(∂v−

0 /∂xn)(∂ϕ/∂xn)ψ dx dt

+
∫ T

0

∫

Ω+
v+

0 ϕψ dx dt + |C|
∫ T

0

∫

Ω−
v−

0 ϕψ dx dt

+k0|∂C|H

∫ T

0

∫

Ω−
v−

0 ϕψ dx dt =
∫ T

0

∫

Ω+
f0ϕψ dx dt

+|C|
∫ T

0

∫

Ω−
f0ϕψ dx dt, ∀ϕ ∈ C∞

0 (R
n;Γ0), ∀ψ ∈ C∞

0 (0, T). (5.11)

Let us fix i ∈ {1, . . . , n − 1} and letwi
ε be a sequence inW1,∞(Ω−) satisfying the following

conditions:

wi
ε → xi strongly inL∞(Ω−), (5.12)

Dwi
ε = 0 a.e. inΩ−

ε (5.13)

for everyε > 0. The existence of such sequence is proved inBrizzi & Chalot (1997) andEspositoet al.
(1997). Let us prove thatγi = 0 a.e. in(0, T) × Ω−. Take the following test functionsϕ = wi

εφ and
ϕ = xiφ with φ ∈ C∞

0 (Ω
−) in (5.10). Then, by virtue of (5.13), we have

−
∫ T

0

∫

Ω−
y−
ε φw

i
εψ

′ dx dt +
∫ T

0

∫

Ω−
∇̃y−

ε ∙ ∇φwi
εψ dx dt

+
∫ T

0

∫

Ω−
ỹ−
ε φw

i
εψ dx dt + k0|∂C|H

∫ T

0

∫

Ω−
y−
ε φw

i
εψ dμε dt

=
∫ T

0

∫

Ω−
χΩ−

ε
fεφw

i
εψ dx dt, (5.14)

−
∫ T

0

∫

Ω−
y−
ε φxiψ

′ dx dt +
∫ T

0

∫

Ω−
∇̃y−

ε ∙ ∇(φxi )ψ dx dt

+
∫ T

0

∫

Ω−
ỹ−
ε φxiψ dx dt + k0|∂C|H

∫ T

0

∫

Ω−
y−
ε φxiψ dμε dt

=
∫ T

0

∫

Ω−
χΩ−

ε
fεφxiψ dx dt, (5.15)
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for everyε > 0, φ ∈ C∞
0 (Ω

−) andψ ∈ C∞
0 (0, T). Hence, passing to the limit in (5.14) and (5.15) as

ε → 0, and using the properties (3.5), (5.4), (5.5), (5.12) and Proposition3.1, we obtain

−|C|
∫ T

0

∫

Ω−
v−

0 φxiψ
′ dx dt +

∫ T

0

∫

Ω−

n−1∑

k=1

γk(∂φ/∂xk)xiψ dx dt

+|C|
∫ T

0

∫

Ω−
(∂v−

0 /∂xn)(∂φ/∂xn)xiψ dx dt + |C|
∫ T

0

∫

Ω−
v−

0 φxiψ dx dt

+k0|∂C|H

∫ T

0

∫

Ω−
v−

0 φxiψ dx dt = |C|
∫ T

0

∫

Ω−
f0φxiψ dx dt, (5.16)

−|C|
∫ T

0

∫

Ω−
v−

0 φxiψ
′ dx dt +

∫ T

0

∫

Ω−

n−1∑

k=1

γk(∂(φxi )/∂xk)ψ dx dt

+|C|
∫ T

0

∫

Ω−
(∂v−

0 /∂xn)(∂φ/∂xn)xiψ dx dt + |C|
∫ T

0

∫

Ω−
v−

0 φxiψ dx dt

+k0|∂C|H

∫ T

0

∫

Ω−
v−

0 φxiψ dx dt = |C|
∫ T

0

∫

Ω−
f0φxiψ dx dt. (5.17)

Comparing (5.16) with (5.17) we conclude that
∫ T

0

∫
Ω− γkφψ dx dt = 0, ∀ k ∈ {1, . . . , n − 1}, ∀φ ∈

C∞
0 (Ω

−) and∀ψ ∈ C∞
0 (0, T). Thus,γi = 0 a.e. in(0, T) × Ω− and we obtain the required. As for

the functionv0 we have the following identity:

−
∫ T

0

∫

Ω+
v+

0 ϕψ
′ dx dt − |C|

∫ T

0

∫

Ω−
v−

0 ϕψ
′ dx dt

+
∫ T

0

∫

Ω+
∇v+

0 ∙ ∇ϕψ dx dt + |C|
∫ T

0

∫

Ω−
(∂v−

0 /∂xn)(∂ϕ/∂xn)ψ dx dt

+
∫ T

0

∫

Ω+
v+

0 ϕψ dx dt + |C|
∫ T

0

∫

Ω−
v−

0 ϕψ dx dt

+k0|∂C|H

∫ T

0

∫

Ω−
v−

0 ϕψ dx dt =
∫ T

0

∫

Ω+
f0ϕψ dx dt

+|C|
∫ T

0

∫

Ω−
f0ϕψ dx dt, ∀ϕ ∈ C∞

0 (R
n;Γ0), ∀ψ ∈ C∞

0 (0, T). (5.18)

However, using the facts thatC∞
0 (R

n;Γ0) is dense inH1(Ω;Γ0) = {ϕ ∈ H1(Ω): ϕ = 0 onΓ0} and
H1(Ω;Γ0) is dense in

V(Ω;Γ0) =
{
v ∈ L2(Ω): ∂xnv ∈ L2(Ω−), v ∈ H1(Ω+), v = 0 a.e. onΓ0

}
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with the continuous injectionH1(Ω;Γ0) ↪→ V(Ω;Γ0) (seeEspositoet al., 1997), we observe that the
integral identity (5.18) is valid withϕ ∈ V(Ω;Γ0). Hence, it can be rewritten in the form

−
∫ T

0

∫

Ω
(χΩ+ + |C|χΩ−)v0ϕψ

′ dx dt +
∫ T

0
(v0, ϕ)V(Ω)ψ dt

=
∫ T

0

∫

Ω
(χΩ+ + |C|χΩ−) f0ϕψ dx dt, ∀ϕ ∈ V(Ω;Γ0), ∀ψ ∈ C∞

0 (0, T). (5.19)

Besides, taking the initial supposition (1.6) into account and using the approach ofDe Maioet al.(2004),
one can prove the relationv0(0, x) = y0(x) a.e. inΩ. Following the standard Hilbert space method and
the arguments inDe Maioet al. (2004), we can state that the functionv0 is a unique weak solution of
problem (5.2) in the sense of Remark5.1. However, due to the uniqueness of the solution to problem
(5.2), the above reasoning holds for any subsequence of{ε} chosen at the beginning of the proof. Thus,
the lemma is proved. �

We are now in a position to state the first important result which deals with the recovery problem of
the Kuratowski’sK (wa)-limit setΞa in the analytical form.

THEOREM 5.1 For the sequence of the sets of admissible pairs forPa
ε -problems{Ξa

ε }, there exists a
non-emptyK (wa)-limit setΞa ⊂ Ya

0 with the following structure:

Ξa =






(u0, v
+
0 , v

−
0 )

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u0 ∈ Ua,

(v+
0 )

′ −1xv
+
0 + v+

0 = f0, in (0, T)×Ω+,

(v−
0 )

′ − ∂2
xn
v−

0 +
|C| + k0|∂C|H

|C|
v−

0

= f0, in (0, T)×Ω−,

∂νv
+
0 = 0, in (0, T)× ∂Ω+ \Σ,

v−
0 = u0, on (0, T)× Γ0,

v+
0 = v−

0 , ∂xnv
+
0 = |C|∂xnv

−
0 , on (0, T)×Σ,

v0(0, x) = y0(x), a.e.x ∈ Ω.






(5.20)

Here,Ua =
{
u ∈ L2(0, T; H1(Γ0)) : ‖u‖L2(0,T;H1(Γ0))

6 C0
}
.

Proof. First of all we note that in view of Theorem4.1, the sequence of sets{Ξa
ε ⊂ Ya

ε } is relatively
compact with respect toK (wa)-convergence. We show that theK (wa)-limit set exists for the whole
sequence and it can be represented in the form (5.20). For this, in accordance with the definition of
K (wa)-limit, we have to verify conditions (1) and (2) of Definition4.1. From the previous lemma, we
see that the setΞa is non-empty. Let(u, y+, y−) be any triplet of the setΞa. To construct a sequence
{(uε, yε)}ε>0 w

a-converging to(u, y+, y−), we put:uε ∈ L2(0, T; H1(Γε)) is the restriction of the
control u ∈ Ua on Γε given above, andyε is the corresponding touε weak solution of the boundary-
value problem (1.2). Then, in view of Definition3.1, we haveuε → u weakly with respect to the space

L2(0, T; H1(Γ0)). Further, using Lemma5.1 we obtain(uε, yε)
wa

→ (u, v+
0 , v

−
0 ), where(u, v+

0 , v
−
0 ) is
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a solution inL2(0, T;V(Ω)) of the limit problem (5.2). Since this problem has a unique solution, we
immediately deduce that(u, v+

0 , v
−
0 ) = (u, y+, y−), thereby property (1) of Definition4.1 is valid.

The second condition of this definition is the evident consequence of Lemma5.1 and the lower
semicontinuity of the norm inL2((0, T) × Γ0) with respect to the weak convergence. This concludes
the proof. �

5.2 Recovery of the setΞb

To establish the structure of the Kuratowski’sK (wb)-limit setΞb, we give a result which not only will
be useful in the sequel but also seems to be interestingper se(for similar one in more complicated case
of perforated domains, seeKesavan & Saint Jean Paulin, 1999).

PROPOSITION5.1 For every bounded sequence{uε ∈ L2(0, T; L2(Γε))}ε>0 such that̃uε → u∗ weakly
in L2((0, T)× Γ0), the following inequality holds:

lim inf
ε→0

∫ T

0

∫

Γε

u2
ε dx′ dt > |C|−1

∫ T

0

∫

Γ0

u2
∗ dx′ dt. (5.21)

The following assertion can be viewed as an analogue of Lemma5.1with respect towb-convergence.

LEMMA 5.2 Let{uε ∈ L2(0, T; H1(Γε))}ε>0 be any sequence of admissible controls forPb
ε -problems

such that̃uε → u∗ weakly inL2((0, T)× Γ0). Let {yε} be the corresponding solutions of the parabolic

problem (1.2) for which supε>0 ‖yε‖Xμε < +∞. Then(uε, yε)
wb

→ (u∗, v
+
0 , v

−
0 ) asε → 0, where

v0(x) =

{
v+

0 (x), x ∈ Ω+,

v−
0 (x), x ∈ Ω−,

(5.22)

is a unique weak solution inL2(0, T;V(Ω)) of the following limit problem:

(v+
0 )

′ −1xv
+
0 + v+

0 = f0, in (0, T)×Ω+,

(v−
0 )

′ − ∂2
xn
v−

0 +
|C| + k0|∂C|H

|C|
v−

0 = f0, in (0, T)×Ω−,

∂νv
+
0 = 0, in (0, T)× ∂Ω+ \Σ,

v−
0 = |C|−1u∗, on (0, T)× Γ0,

v+
0 = v−

0 , ∂xnv
+
0 = |C|∂xnv

−
0 , on (0, T)×Σ,

v0(0, x) = y0(x), a.e.x ∈ Ω.






(5.23)

Proof. As follows from Proposition3.3and Lemma5.1, we have to show that the relation

v−
0 = |C|−1u∗ on (0, T)× Γ0 (5.24)

holds true. For this, we note that(ỹ−
ε )|Γ0 → |C|(v−

0 )|Γ0 weakly in L2((0, T) × Γ0) and the following
statements

ỹ−
ε = ũε a.e. on(0, T)× Γ0, ∀ ε > 0,

ũε → u0 weakly in L2((0, T)× Γ0) (5.25)
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are valid. Then the required relation (5.24) immediately follows from (5.25) after passing to the limit in
(5.25) asε → 0. In order to conclude our proof, we have to follow the arguments in the proof of Lemma
5.1closely. �

Now, we are able to prove the theorem concerning the structure of the Kuratowski’sK (wb)-limit
setΞb.

THEOREM5.2 Let{Ξb
ε }ε>0 be the sets of admissible pairs forPb

ε -problems possessing the (N )-property.
Then for this sequence there exists a non-emptyK (wb)-limit setΞb ⊂ Yb

0 which can be represented in
the form

Ξb =






(u0, v
+
0 , v

−
0 )

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u0 ∈ Ub,

(v+
0 )

′ −1xv
+
0 + v+

0 = f0 in (0, T)×Ω+,

(v−
0 )

′ − ∂2
xn
v−

0 +
|C| + k0|∂C|H

|C|
v−

0

= f0 in (0, T)×Ω−,

∂νv
+
0 = 0 in (0, T)× ∂Ω+ \Σ,

v−
0 = |C|−1u0 on (0, T)× Γ0,

v+
0 = v−

0 , ∂xnv
+
0 = |C|∂xnv

−
0 on (0, T)×Σ,

v0(0, x) = y0(x) a.e.x ∈ Ω.






(5.26)

Here,Ub =
{
u ∈ L2((0, T)× Γ0) : ‖u‖L2((0,T)×Γ0)

6
√

|C|C0
}
.

Proof. To obtain the representation (5.26), we have to verify conditions (1) and (2) of Definition4.1. Let
(u, y+, y−) be any triplet of the setΞb. In accordance with (N )-property ofPb

ε -problems, there can be
found awb-convergent to(u, y+, y−) sequence{(̂uε, ŷε)}ε>0 such that(̂uε, ŷε) ∈ Ξb

ε for everyε > 0.

However, due to Lemma5.2we have(̂uε, ŷε)
wb

→ (u, v+
0 , v

−
0 ), wherêv = (v+

0 , v
−
0 ) is a weak solution in

L2(0, T;V(Ω)) of the limit problem (5.23). Since this problem has a unique weak solution (seeLions,
1971), we immediately deduce that(u, v+

0 , v
−
0 ) = (u, y+, y−). Thus, property (1) of Definition4.1

holds for any triplet(u, y+, y−) ∈ Ξ0.
We now verify the second property of Definition4.1. Let {(uk, yk)}k∈N be awb-convergent sequence

for which there exists a sequence{εk → 0} such that(uk, yk) ∈ Ξb
εk

for all k ∈ N. Let (u, y+, y−) be
itswb-limit. Then by Proposition5.1, we immediately have

C0 > lim inf
k→∞

‖uk‖L2
(
(0,T)×Γεk

) >
√

|C|−1 ∙ ‖u‖L2((0,T)×Γ0)
,

i.e. u ∈ Ûb . In conclusion, it remains only to apply Lemma5.2. Thus (u, y+, y−) ∈ Ξb, and we
obtained the required. This concludes the proof. �
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6. Identification of the cost functionalsIa and Ib

In this section, we show that the cost functionals of the limit constrained minimization problems

〈
inf

(u,y+,y−)∈Ξa

Ia(u, y+, y−)

〉
and

〈
inf

(u,y+,y−)∈Ξb

Ib(u, y+, y−)

〉
(6.1)

can be recovered in an explicit form and their analytical representations are different. We begin with the
following results.

THEOREM 6.1 For the sequence ofPa
ε -problems (3.1) there exists a variationalwa-limit (in the sense

of Definition4.3)
〈

inf
(u,y+,y−)∈Ξa

Ia(u, y+, y−)

〉
, (6.2)

where the setΞa is defined in (5.20) and

Ia(u, y+, y−) =
∫ T

0

∫

Ω+
(y+ − q0)

2 dx dt + |C|
∫ T

0

∫

Γ0

u2 dx′ dt. (6.3)

Proof. In order to obtain the relation (6.3), we verify conditions (ii) and (iii) of Definition4.3. Let

(u, y+, y−) be any triplet ofΞa and{(uk, yk)}k∈N be awa-convergent sequence such that(uk, yk)
wa

→
(u, y−, y+), (uk, yk) ∈ Ξεk for everyk ∈ N, where{εk} is a subsequence of{ε} converging to zero.
Then using Lemma5.1, the definition of the class of admissible controls and the properties ofwa-

convergence, we get
∫ T

0

∫

Ω+
(y+
ε )

2 dx dt →
∫ T

0

∫

Ω+
(y+)2 dx dt,

∫ T

0

∫

Γεk

u2
k dx′ dt =

∫ T

0

∫

Γ0

χΓε
(
Pεkuk

)2 dx′ dt, for everyk ∈ N,

∫ T

0

∫

Γ0

χΓε
(
Pεkuk

)2 dx′ dt → |C|
∫ T

0

∫

Γ0

u2dx′ dt ask → ∞

(as the limit of the product of weakly and strongly convergent sequences) and, therefore,

lim inf
k→∞

Iεk(uk, yk)=
∫ T

0

∫

Ω0

(y+ − q0)
2 dx + |C|

∫ T

0

∫

Γ0

u2dx′ dt

= Ia(u, y+, y−), (6.4)

i.e. property (ii) of Definition4.3 is valid.
Similarly, we can show the correctness of the ‘contrary’ inequality (4.5). Indeed, in this case it is

enough to consider the ‘realized sequence’{(uε, yε)} as follows:uε ∈ L2(0, T; H1(Γε)) is the restric-
tion of u ∈ Ua onΓε, andyε is the corresponding touε solution of the boundary-value problem (1.2).

Then, by Lemma5.1 we have(uε, yε)
wa

→ (u, y+, y−). For the conclusion of this proof, we should
repeat the arguments concerning the correctness of the limit passage (6.4). �
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THEOREM 6.2
〈

inf
(u,y+,y−)∈Ξb

Ib(u, y+, y−)

〉
(6.5)

is the variationalwb-limit for the sequence ofPb
ε -problems (3.1). Here, the setΞb is defined in (5.26)

and

Ib(u, y+, y−) =
∫ T

0

∫

Ω+
(y+ − q0)

2 dx + |C|−1
∫ T

0

∫

Γ0

u2 dx′ dt. (6.6)

Proof. To obtain the representation (6.6) it is enough to repeat the same arguments of the proof of
Theorem6.1 and to apply Proposition5.1 and Lemma5.2. In this case, for any sequence{(uk, yk) ∈
Ξb
εk

}k∈N w
b-converging to(u, y+, y−) we have

lim inf
k→∞

Iεk(uk, yk) >
∫ T

0

∫

Ω+
|∇y+|2 dx dt + |C|−1

∫ T

0

∫

Γ0

u2 dx′ dt = Ib(u, y+, y−).

To verify the correctness of the inequality (4.5), for arbitrary triplet(u, y+, y−) ∈ Ξb we have to
construct the special ‘realizing sequence’{(uε, yε)} satisfying condition (iii) of Definition4.3. With
this aim, we construct thewb-convergent sequence{(uε, yε) ∈ Ξb

ε }ε>0 to (u, y+, y−) as follows. Let
{uε ∈ L2((0, T)× Γ0)} be any sequence suchthat

uε → u weakly inL2((0, T)× Γ0); ‖uε‖L2((0,T)×Γ0)
<
√

|C| ∙ C0

for everyε > 0. Since the weak topology ofL2((0, T)× Γ0) is metrizable on the set

Ûb =
{
u ∈ L2((0, T)× Γ0): ‖u‖L2((0,T)×Γ0)

6
√

|C| ∙ C0

}
,

one can construct a sequence{wε ∈ L2((0, T) × Γ0)}ε>0 satisfying the following condition: each
elementwε is a convex envelope of a finite amount of the elements{uε}ε>0, andwε → u strongly in
L2((0, T)× Γ0). Note that in this case, we have

‖wε‖L2((0,T)×Γ0)
<
√

|C| ∙ C0, for everyε > 0.

Thus, a weak convergent sequence{uε}ε>0 to u can be taken in the following form:uε ∈ L2(0, T;
H1(Γε)) are elements such that‖uε − |C|−1wε‖L2((0,T)×Γε) < ε

2.
In view of (N )-property, we can suppose that the sequence of norm

{
‖uε‖L2(0,T;H1(Γε))

}
is uni-

formly bounded. Since|C|−1χΓεwε → u weakly in L2((0, T) × Γ0) (as the limit of the product of
weakly and strongly convergent sequences) and

‖|C|−1wε‖L2((0,T)×Γε) =

√∫ T

0

∫

Γ0

χΓε
w2
ε

|C|−2
dx′ dt →

√∫ T

0

∫

Γ0

u2

|C|−1
dx′ dt < C0,

it follows thatũε → u weakly inL2((0, T)× Γ0) anduε ∈ Ub
ε for ε sufficiently small.

We may always suppose that the elementswε have the representationwε = |C|−1ŵε, where the
sequence{ŵε} is constructed as follows:

L2((0, T)× Γ0) 3 ŵε → u strongly inL2((0, T)× Γ0),

‖ŵε‖L2((0,T)×Γ0)
<
√

|C| ∙ C0, ∀ ε > 0.
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Then

lim
ε→0

‖wε‖
2
L2((0,T)×Γε)

= lim
ε→0

‖|C|−1χΓε ŵε‖
2
L2((0,T)×Γ0)

= |C|−2 lim
ε→0

∫ T

0

∫

Γ0

χΓε ŵ
2
ε dx′ dt = |C|−1‖u‖2

L2((0,T)×Γ0)
,

i.e. for the realizing sequence of the Dirichlet boundary controls{uε}, we have

lim
ε→0

∫ T

0

∫

Γε

u2
ε dx′ dt = |C|−1

∫ T

0

∫

Γ0

u2 dx′ dt

anduε ∈ Ub
ε for all ε > 0.

Let yε be as the corresponding touε solutions of the boundary-value problem (1.2). Then by (N )-

property and Lemma5.2, we have(uε, yε)
wb

→ (u, y+, y−) and, therefore

lim sup
ε→0

Iε(uε, pε, yε)= lim
ε→0

∫ T

0

∫

Ω+
(y+
ε − q0)

2 dx dt + lim
ε→0

∫ T

0

∫

Γε

u2
ε dx′ dt

>
∫ T

0

∫

Ω+
(y+ − q0)

2 dx dt + |C|−1
∫ T

0

∫

Γ0

u2 dx′ dt.

This concludes the proof. �

Thus, in accordance with Definition4.4 and the results obtained above we may infer: each of the
constrained minimization problems (6.1) can be recovered in the form of some optimal control prob-
lems, namely,(Pa

hom) (see (1.1), (1.2), (1.4)) and(Pb
hom) (see (1.1), (1.2), (1.5)). Hence, the problemsPa

ε

andPb
ε admit the homogenization asε tends to zero. However, the corresponding homogenized prob-

lems have the different mathematical descriptions and these differences appear not only in the state
equation and boundary conditions but also in the control constraints and limit cost functionals. In fact,
the reason of this gap phenomenon is the choice of the different topologies for the homogenization of the
original control problem (1.2), (1.4) that were associated withwa- andwb-convergence, respectively. It
should be stressed that in our case this choice was fated by the characteristic properties of the control
constraints.

In conclusion, we give some results concerning the variational properties of the homogenized prob-
lems. As was noted before, the problems(Pa

hom) and(Pb
hom) have to preserve the well-known variational

property, namely, both optimal pairs and minimal values of the cost functionals for the original problems
have to converge to the corresponding characteristics of the limit optimal control problems asε tends to
zero. To establish this result, we begin with the following evident assertion.

PROPOSITION6.1 Each of the limit optimal control problems (see (1.8–1.10) and (1.11–1.13)) has a
unique solution.

Indeed, taking into account the weak lower semicontinuity of the cost functionalsIi : Ξi → R
(i = a, b), the topological properties of their domainsΞi (i = a, b), and applying the direct method of
calculus of variation, we just obtain the required result.
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Let us denote by(ua, (ya)+, (ya)−) ∈ Ya
0 and (ub, (yb)+, (yb)−) ∈ Yb

0 the optimal triplets for
(Pa

hom) and(Pb
hom) problems, respectively.

LEMMA 6.1 If the functionsfε andy0
ε satisfy conditions (1.6) and (1.7), then the sequence of optimal

solutions{(ua
ε , ya

ε ) ∈ Ξa
ε } to Pa

ε -problems and the corresponding minimal values of the cost functional
(1.1) possess the following properties:

lim
ε→0

Iε(u
a
ε , ya

ε )= lim
ε→0

inf
(uε,yε)∈Ξa

ε

Iε(uε, yε)

= inf
(u,y+,y−)∈Ξa

Ia(u, y+, y−) = Ia(u
a, (ya)+, (ya)−), (6.7)

(ua
ε , ya

ε )
wa

→ (ua, (ya)+, (ya)−). (6.8)

Proof. As follows from previous results, for every value ofε the optimal control problems (1.1–1.4)
has a unique solution(ua

ε , ya
ε ) ∈ Ξa

ε . Since the sequence{ua
ε }ε>0 ⊂ Ua

ε is bounded, there exists a
subsequence{ε′} of {ε}, which we again denote by{ε}, such thatua

ε → ua ∈ Ua weakly with re-

spect to the spaceL2(0, T; H1(Γ0)) asε → 0. Then, in view of Lemma5.1, we have(ua
ε , ya

ε )
wa

→
(ua, (y∗)+, (y∗)−) asε → 0, where the triplet(ua, (y∗)+, (y∗)−) is the unique solution of problem
(1.8) with the Dirichlet conditiony− = ua on Γ0. By Theorem4.3, we immediately conclude that
(ua, (y∗)−, (y∗)+) is an optimal solution of homogenized problems (1.8–1.10) and property (6.7) is
valid. Hence,

(ua, (y∗)−, (y∗)+) = (ua, (ya)+, (ya)−).

So, we obtained the required result. �

REMARK 6.1 It should be noted that the realization of conditions (6.7) and (6.8) warranty covered by
Lemma6.1does not imply the strong convergence of optimal statesya

ε .

LEMMA 6.2 Assume that the functionsfε and y0
ε satisfy conditions (1.6) and (1.7), Pb

ε -problem is
solvable for every valueε > 0 and the sequence of optimal solutions{(ub

ε , yb
ε ) ∈ Ξb

ε } for Pb
ε -problems

is such that supε>0 ‖yb
ε ‖Xμε <+ ∞. Then

lim
ε→0

Iε(u
b
ε , yb

ε )= lim
ε→0

inf
(uε,yε)∈Ξb

ε

Iε(uε, yε)

= inf
(u,y+,y−)∈Ξb

Ib(u, y+, y−) = Ib(u
b, (yb)+, (yb)−), (6.9)

(ub
ε , yb

ε )
wb

→ s(ub, (yb)+, (yb)−), (6.10)

ũb
ε − |C|−1χΓεu

b → 0 strongly inL2((0, T)× Γ0). (6.11)

Proof. Using the arguments of the previous lemma and Theorem5.2, it can be easily checked that
conditions (6.9–6.10) hold. To conclude the proof, it remains to verify the assertion (6.11). However, in
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view of (3.7) and the fact that‖ub
ε‖

2
L2(0,T;L2(Γε))

→ |C|−1‖ub‖2
L2((0,T)×Γ0)

(see (6.9)), we get

∫ T

0

∫

Γ0

(̃ub
ε − |C|−1χΓeu

b)2 dx′ dt =
∫ T

0

∫

Γe

(ub
e)

2 dx′ dt − 2|C|−1
∫ T

0

∫

Γ0

ubũb
ε dx′ dt

+|C|−2
∫ T

0

∫

Γ0

χΓe(u
b)2 dx′ dt → |C|−1

∫ T

0

∫

Γ0

(ub)2 dx′ dt

−2|C|−1
∫ T

0

∫

Γ0

(ub)2 dx′ dt + |C|−1
∫ T

0

∫

Γ0

(ub)2 dx′ dt = 0 asε → 0,

which yields (6.11). This completes the proof. �

7. Conclusion

To emphasize the contribution of this paper, we would like to point out one possible application of the
above results concerning the approximation of the optimal solutions to the original problem forε small
enough. Since the computational calculation of the solutions of these problems is very complicated, it is
particularly relevant to define the so-called suboptimal solutions which have to guarantee the closeness
of the corresponding value of the cost functionalIε(usub

ε , ysub
ε ) to its minimum forε small enough. In

view of this we introduce the following concept.

DEFINITION 7.1 We say that a sequence of functions{̃ua
ε } is asymptotically suboptimal forPa

ε -problem
if for every δ > 0 there isε0 > 0 such that

∣
∣
∣
∣ inf
(uε,yε)∈Ξa

ε

Iε(uε, yε)− Iε(̃u
a
ε , ỹε)

∣
∣
∣
∣ < δ, ∀ ε > ε0,

where bỹyε = ỹε(̃ua
ε ) we denote the corresponding solution of the parabolic problem (1.2).

As follows from Proposition6.1 each of the limit optimal control problems (1.8–1.10) and (1.11–
1.13) has a unique solution. Then Lemma6.1 anda priori estimate (2.5) immediately lead us to the
following result.

THEOREM 7.1 Let (ua, (ya)+, (ya)−) ∈ Ya
0 be an optimal solution for the homogenized(Pa

hom)-
problem. Then the sequence{ua|Γε }ε>0 is asymptotically suboptimal forPa

ε -problem.

After minor modifications, the similar result can be established forPb
ε -problem.

In conclusion, we would like to note that the result of the homogenization of optimal control prob-
lems may essentially depend on the differential properties of its solutions. Choosing different topologies
on the space of the ‘control state’, the corresponding limit optimal control problems may have drasti-
cally different mathematical descriptions. Thus, the choice of such topologies is a very important and
non-trivial matter when dealing with the questions of asymptotic behaviour of the optimal control prob-
lems. In the theory of boundary-value problems, this fact is called the Lavrentieff phenomenon (see
Zhikov & Lukkassen, 2001).
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