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In this paper, we study the asymptotic behaviour of a parabolic optimal control problem in a domain
Q. c RN, whose boundargQ, contains a highly oscillating part. We consider this problem with two
different classes of Dirichlet boundary controls, and, as a result, we provide its asymptotic analysis with
respect to the different topologies of homogenization. It is shown that the mathematical descriptions of
the homogenized optimal control problems have different forms and these differences appear not only in
the state equation and boundary conditions but also in the control constraints and the limit cost functional.

Keywords optimal control problem; homogenization; thick multi-structure; variational convergence; set
convergence; gap phenomenon.

1. Introduction

The aim of this paper is to study the asymptotic behaviour of the following class of the parabolic optimal
control problems:

I, (Ug, Vi) = /T/ (Ve — 0jo)? dx dit +/T/ u2dx’ dt — inf, (1.1)
0o Jo+ o Jrn,
Yo — AxYe +Ye = fe, in (0,T) x 2,
O Ye = —ekoYe, on (0,T) x &,
Ye = Ug, on (0, T) x I, (1.2)
oY. =0, on (0,T)xo00Q.\([;US),
y:(0,x) = y? ae.xe Q,,
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as a small parametertends to zero. HereQ, c R" denotes a thick multi-structure for which the
following representation holds true (see Figor 3D example):

Q. =Bx 00| JEC+ek x (=d.0] | =e*J|JGk]|.

ke, ked,

whereB = (0,a)"~! andC are bounded open smooth domainRitr! (n > 2), C cc (0, 1)1,
0, = {k = (ki, ko, ..., kn—1) e N""1: ¢C + ¢k cc B},

Q=B x(—d,0), G‘; ={(X,Xn): X' € eC + ¢k, —d < xn < 0},
>=Bx{0, QT=Bx(0,c), Q =Bx(-dDO0), (1.3)
lo=Bx{-d}, @ =0,NnQ",

I, is the union of the lower basez’égk = {(X, Xn): X' € ¢C + ¢k, x, = —d} of the thin cylinders
G whenk € 0, (i.e. I, = IH N 82;), S is the union of their boundaries along the agis,: ¢ =
{(X, Xn): X' € £0C + ¢k, —d < xn < 0}, ko is a positive constang, = 6/6v is the outward normal
derivative andjp € L2(0, T; L2(21)), y0 € L2(Q,) and f, € L?(0, T; L2(Q)) are given functions. In
the sequel, we shall always assume that a/N, whereN is a large positive integer. For this kind of
domains and boundary-value problemglp, we refer toBrizzi & Chalot (1997, Mel'nyk & Nazarov
(1999 andMel’'nyk (2001).

We consider the optimal control probleth 1), (1.2) assuming that there are two different classes of
admissible boundary contrdl? (so-called regular controls) altuf (so-called contrast controls) which
are realized via the Dirichlet boundary conditions posed on the lower Bas#ghe thin cylinder@ﬁ,
where

U, € U2 = {ulr u e L3O, T5 HA(U0), Iull 2o mimeryy < Co) - (1.4)
U, €UP = [ue L20, T HI), lulliz i) < Co - (1.5)
We denote the problemd.@), (1.2), (1.4) and (.1), (1.2), (1.5 by P2 andP'j, respectively. It is well

known that the computational calculation of the optimal solutions of these problems is very complicated
through the singularities of the thick junctiof . Therefore, the study of their asymptotic behaviour as

FiG. 1. Thick multi-structureR,.
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the parameter tends to zero is one of the main approach to the analysis of optimization problems in such
domains. As a rule it gives the possibility to replace the original problems by the corresponding limit
problems defined in a more ‘simpler’ domain with the preservation of the main variational property:
both optimal solution and minimal value of the cost functional for the original problem converge to the
corresponding characteristics of a limit optimal control problema &ends to zero. So, our goal is to
obtain an appropriate asymptotical limit for the optimal control probl@fnandIPE as the parameter

tends to zero.

For comparison we note that the asymptotic analysis of an optimal control problem for linear elliptic
equations in the thick multi-structures with?-admissible boundary controls was given in the recent
work Kogut & Mel'nyk (2004. The optimal control problems for linear parabolic equations in the
same domains with unconstrained distributédcontrols were studied be Maioet al. (2004. The
characteristic feature of considered optimal control problems is the fact that each of these problems has
a unique solution for every.

The optimal control problemB2 andIP’E we consider are such that the existence of an optimal solu-
tion for the control problerﬁ”? must be taken as probable, but not certainly proved. This circumstance is
atypical for the overwhelming majority investigations in this field. We show that the result of homoge-
nization for these problems as— 0, i.e. when the number of attached thin cylinders infinitely increases
and their thickness vanishes, essentially depends on the classes of admissible controls. Ndg@gly, let
be the(n — 1)-dimensional Lebesgue measure of thegi, be the zero-extension @ of a function
v defined onQ, and y o+ andy - be the characteristic functions of the s&t$ andQ ~, respectively.
Having assumed

52— (IClyo- + xo+)y° weakly inL2(Q) ase — 0, (1.6)
f. > (IClxo- + yo+) foweakly inL?(0, T; L?(R2)) ase — 0, 1.7)

we prove that for thé2-problem there exists a unique homogenized @#fg, ) ase — 0 that can be
represented in the form

(Yt — Axyt+yt=fo, in (0, T)x QT,

C aC
) =y + [l toloBln +|kC°|| Y- —fo, IO T)x @,
oyt =0, in(0,T)x0Q%\Z,

y 0, T) \ 8

y"=u, on (0,T)x Iy,

yt=y~, oyt =IClox,y~, on (0, T)x 2,

y(0,x) = y°(x), ae.xeQ,

UeUy= {u e L20, T; HY(I0): Iull 20 1:H1(ry)) < Co} , (1.9)

T T
la(u, y+,y-)=/0 /Q+(y+—qo)2dxdt+|C|/0 /F u?dx’ dt — inf, (1.10)
0
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whereas for the optimal control probldﬁ? the homogenized on(é]’ﬁom) has another analytical repre-
sentation

yh —AxyT+yt="fo, in (0, T)x QT,

C oC .
(Y -y + SOyt i@ x 0,
oyt =0, in (0,T)xoQt\ X,
y (0.T)x 027\ 2. | (1.11)
vo =ICI7tu, on (0, T) x I,
y+ = y_5 axny“l‘ = |C|6Xny_’ on (07 T) X 25
y(0,x) = y2(x), ae.xe Q,
UeUp= {u e LA((0, T) x Io): llull 20wy < ~/|C|Co} , (1.12)
T 1 T
Ip(U, y+,y_)=/ / (y" —qo)?dxdt + —/ / u?dx’ dt — inf. (1.13)
o Jo+ IClJo Jrp

Here byv™ ando™ we denote the restrictions of a function(0, T) x Q2 — Rtothe setg0, T) x Q*
and(0, T) x 7, respectively.

The plan of this paper is as follows. In Secti®rfollowing the approach afhikov (2000, we give
the description of the Robin boundary conditions for the boundary-value prol&rir{ terms of the
so-called singular measures and reformulate the original optimal control problems. W [gilcei
norm estimate for their solutions and study also the solvability of such problems at a fixed value of

In Section3, we deal with the question of definition of an appropriate topology for the homogeniza-
tion of the original optimal control problems (see Definitidh8 and3.4). We prove that any sequence
of admissible pairs for the corresponding problem is relatively compact with respect to the so-called
w?- andwP-convergence, respectively. Sectiis devoted to the definition of the homogenized prob-
lems and their main variational properties. In Sectionve establish the analytical representation for
the limit sets of admissible solutiori, and =Z,. We show that each of these sets can be represented in
an explicit form (see Theorentsland5.2).

In Section6, we give the result of identification for the limit cost functiongisandl,. We show that
these functionals have different analytical representation and prove the main results of homogenization
for problemsP? andPP ase — 0.

2. On solvability of the original optimal control problems

We begin this section with the description of the geometry of the&Sset terms of a singular measure
in R" (seeBouchitte & Fragala2001; Zhikov, 2000. Let u be a periodic finite positive Borel measure
in R"~1 with the torus of periodicityd = [0, 1)"~1. We assume that the Borel measurg is the
probability measure, concentrated and uniformly distributed on thzm&tofD duo =1.

REMARK 2.1 By definition we haveo(CJ \ 6C) = 0. Therefore, any functions, taking the same values
on the manifoldoC, coincide as elements df2(CJ, duo). Here, the Lebesgue spaté(C], dug) is

defined in a usual way with the corresponding nqrm'iZ(D,dyo) = | | f(X)|?duo (we adopt the

standard notatioh ?(CJ) when g is the Lebesgue measure).
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Now, we set], = O x [0, 1) = [0, 1)" and consider the measurg & dug x dx in Oy. It is easy
to see that this measure concentrated on théGet [0, 1), and for any smooth functiog we have

1
gdu = / / gdxndug = [H"1@C % [0, 1))] 1 / gdx"t
O, 0o JO aCx[0,1)

(seeEvans & Gariepy1992. HoweverH"~1(6C x [0, 1)) = H"~2(8C). Then, using in the sequel the
notation|oC|y = H"~2(6C), the previous relation can be rewritten in the form

1
/ gd,u:/ /gdxndﬂozmcml/ gdn"1. (2.1)
On o JO aCx(0,1)

For instance, let us consider the plane thick multi-strucyre- R2. Then,n = 2 and the set is some
part of the segmenD, 1), e.9.C = {x1 € (0, 1): |[x1 — 1/2| < h/2}, whereh € (0, 1) is a fixed number.
So, in this cas¢C|y = 2 and the 1-periodic measuig in R can be defined by the rule

1

1
Ho = = (s + o) = 5

1 ( 3 ,
= aCln (5M1 + 5M2) ,  WhereM; = > + <| — _) h, i =12

2

Here bydy, we denote the Dirac measures located at the pdiintShus, the multiplielracm1 in (2.2
is equal to 2.

Let 4 be any Borel set dR". We introduce the so-called ‘scaling’ measureby the ruleu . (4) =
e"u(e~14). This measure has the periedSinceu(¢[Jn) = ¢ - uo(ed) by definition of , it follows

that
& 1
1 (eDp) = & / / duo(X'/e)d(Xn/6) = " / / Ao dn = .
0 Jed o JO

It means that the measure weakly converges to the Lebesgue measuiRirase — 0 (in symbols
du; — dx), i.e. im0 [pn ¢ due = [ @ dx for all functionsp € C5°(R") (seeZhikov, 2000.
Since the Sobolev spadd!(Q,) can be viewed as the closure Gf°(R") with respect to the

norm(fgg (Y2 + |Vy|2)dx)2, it follows thaty, € L2(0, T; H1(Q,)) is the weak solution of the above-
mentioned problem whenever (deiens, 1971)

T T
/ / (=Yeoy' + VY - Voy + y.pp)dxdt + k08/ / Yooy dx’ dt
0 Q. 0 S

T
=/ / fopwdxdt, Vee Cgo(Rn; I;), Yy e C5°(0,T), (2.2)
0 Q.

where byC3°(R"; I';) we denote the set of all functions 6§°(R") such thaip|, = 0.
Let us consider the last term in the left part of identy2. Using the notations introduced above,

we may write down
0
/ / Yo dH" 2 dxy | w dt
e(0C+kj) J—d

Nn—l 0
/@ ) )/stcve”‘zdﬂo(X’/s)dxn y
e(LU+K;j -

=koe|0C| /OT (Z

=1

NP-1

T T
ke/ / A dX/dtzkos/
o0 | | veov ; >

=1
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=l<o|ac|H/oT

Nn—l 0
/ / Saoe" duo('/)d(xn/e) | v
e(0+kj) J—d

0
/ / S/E(ﬂd#s) ot
e(@+k;) J—d

.
=ko|8C|H/ / Voo w du dt.
0 Q-

j=1

Nn-1

=|<0I6CIH/OT (Z

j=1

Here byy, we denote a function af2(0, T; L2(£2~, du,)) taking the same values wit on the set
S.. Note that the integraf,, - V. du. is well defined for every functiop € C3°(R"; I7). Indeed, since
the setQ~ is bounded ang;, du. is a Radon measure, it follows thft_ V.o du. is a linear continuous
functional onC5°(R"; I7).

Let X,,, be the vector space of functiogs € L2(0, T; H1(2,)) such thaty, € L2(0, T; L2(Q~,

du.)), i.e. for any functiony, € X,, the integralfoT fQ, yg2 du. is well defined. It is easy to see that
Xy, is the Hilbert space with respect to the following scalar product:

T T
(¥s, Ds)XM :/0 /_Q (VYe - Vo, + ygvs)dx dt +/0 /Q— Ye Ve d,ug dt.

As aresult of this motivation, we give the following variational formulation of the initial boundary-value
problem (.2).

DEFINITION 2.1 We say that a functiop. = vy, (u;) is a weak solution of the parabolic problei2)
for a given functioru, € L2(0, T; HL(1})) if

T T
/0 /Q(—ng’+Vyg~VW+ng)dxdt+ko|60IH/0 /Q_ygwdﬂgdt

T
=/ / feow dxdt, (2.3)
0 JQ,

Ve € Xy Ye(0,x) =y0 aexe Q,, Yelr, =u, aete(0,T), (2.4)

holds for everyy € C5°(R"; I';) andy € C3°(0, T).
Then using the standard Hilbert space method, we have the following result.

PROPOSITION2.1 For any given function, € L2(0, T; H1(Z})), problem (..2) admits a unique weak
solution in the sense of Definitidh 1 such that

Y. € L20, T; (HH(Q.))),
IYellx,, <cC (|| fellLz(0,1)x0,) T ||Ue|||_2(o,T;H1(rg))) , Ve>0, (2.5)

where a constartt > 0 is independent of (seeLions, 1971).
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Now, we can return to the question on solvability of the optimal control prob[@@nmdﬁ”?. For
this, we rewrite the original problems as follows:

(P2): <( inf ralg(ug,yg)>, (IF’E’):< inf Ig(ug,ys)>, (2.6)

e, Ye) €= (Ug,Ye)eZP

where byZ2 and = b we denote the sets of admissible pairs for the corresponding control problems, i.e.

u; € Uai?’ Ye € Xy Yelr, = Ue,
v:(0,x) =y? aexe Q,,

.
/O /QP(—ygeot//’+Vyg “Voy + Y.py)dxdt Ci—ab @7

T T
+ko|ac:|H// yS(/’V/d#edt=/ / Ly dx
0 Q- 0 Q.

Vo e CPR"; I), Vy € C3°(0, T) ]

= (usa ya)

o =

[n)

Using the direct method of the calculus of variations, it can be easily showiP#ratoblem has
the unique solution for every value> 0: 1. (ug, y2) = inf(y,,y,)eza |- (Ug, Ye). As for theIP’Q—problem,
we observe that its set of admissible paﬂg is convex and closed ih?(0, T; H1(2,)) x Xy, and
the cost functional.1) is strictly convex and lower semicontinuous with respect to the weak topol-
ogy of L2(0, T; H1(Q,)) x L2(0, T; H1(Q,)). Hence, we cannot assert the solvability of this prob-
lem in general i.e. the existence of an optimal solul(ufl, yP) e =P for the PP-problem must be
taken as probable, but not certainly proved. However, |ﬂRE|¢)roblem is solvable, then its solution
is unique. Letr2 be the product of the weak topologies lof(0, T; HY(I)) andL?(0, T; H1(R,)),
andz? be the product of the weak topolog|es l0%(0, T; LZ(I“)) andL2(0, T; H1(2,)). Let us de-
note by Clb._z b the closure of the se‘E with respect to the -topology and consider the following
constrained minimization problem (so- caIIeLBi-reIaxed problem for the optimal control probl@ﬁ).

<inf(ua ye)eol p =0 [ (ug, yg)> It is clear that this problem is solvable for everylndeed, c,jbEb is a

convex, closed and bounded subseL &0, T; L2(1;)) x X,,, andl,: L2(0, T; L2(I3)) x X,, = R
is the strictly convex; -Iower semicontinuous functional. This means that this problem has a unique
solution(u?, yZ) e cl HE

THEOREM 2.1 If (ué, yé) is an optimal pair forIPb problem, then(ué, yé) is the unique solution of
z0-relaxed problem.

Proof. Let ¢ be any fixed value (we recall that= a/N). Since=P c cI b , we have

inf lo(Ug, Vo) < inf I (Ug, Ve).

(Ug, yL)ECI bE (Ug,Ye) E"—
Let (uZ, y!) be a solution ot P-relaxed problem. Assume that

(U5, y¥) < inf 1a(Ug, ¥e) = 1(UP, yP) = a. (2.8)

(Ug, ys)e—'r
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It means tha(uy, y;) € clp=; =b\ ZP. At the same time there exists a sequence of admissible pairs

{(Ug,n, Ye,n) C Egb: n € N} such thai(u, n, Y. n) —"> (u?, yZ). Obviously,
le(Ug.n, Yen) = inf le(Us, Ye) =0a, VYneN. (2.9

(Ug, yr)e-

By virtue of therf-lower semicontinuity property of the cost functiorigl we just have liminf_, -
l¢(Ug,n, Yen) = (U7, 7). Then taking into account relatio2.9), we conclude that, (u?, y}) > a.
However, this contradicts inequalit?.g). As a result,

a=l.(u;,y) = inf I «(Ug, Ye),

(Ug,Ye)ecl b:

Le.(uz, yy) = (U2, ). O

3. Formalism of convergence in variable Banach spaces

It is clear that=2 C HF , and these inclusions are strict for every fixedo, the problem®? ande
are drastically d|fferent from the control theory point of view. It means that the following mequallty can
be held for every: > O:
LU,y = min_ LU, Y:) > min_ (U, Ye).
(Ug,Ye)ez2 (Ug,Y:)eED
Hence, in the ‘limit’ ase tends to zero we can obtain one homogenized problem for the (a)-case and
another one for the (b)-case.

To study the asymptotic behaviour of the problelﬁjsand[?"g, we adopt the concept of the varia-
tional convergence of constrained minimization problems fgemich 1984 Buttazzq 1993 Kogut &
Leugering 2001). Then the homogenization procedure can be reduced to the limit analysis of the fol-
lowing sequences:

[< inf_ 1.(u, y)>: & — O] , inf  1.(u,y)):e > 0¢, (3.1)
(uy)ez2 (uy)ezp
where the cost functionals : ; — R,i = a, b, and the corresponding sets of admissible pairs are

defined in (..1) and @.7), respectively.

Note that because of the specific construction of the dom@jnsve have rather delicate situation
with the limit passage in2(6) ase — 0. Indeed, each of the admissible pdius, y.) belongs to the
corresponding space

Y, 1= L0, T; HY(1) x Xy, (3-2)

and this fact is common as fd@2-problem so forPP-one. Therefore, we focus our attention in this
section on working up of the convergence formalism in such spaces.

3.1 The convergence concept fBf-problems

Let {(u,, ¥:)}.~0 be a sequence of pairs such thate U2, y, € X,,,Ve > 0, and

Iimsup||yg||§<l _Ilmsup[/ / (IV¥el dx+yé)dxdt+/ / Y; d/zb:|<+oo

e>0 e>0
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It is clear that any sequence of admissible pgis, y,) € Z2}.-0 satisfies these assumptions.

As the definition of the setd2 indicates (seel(4)), for everye > 0 and for every control func-
tion u, € U2 there exists an extension operaf@yr. L2(0, T; HY(7})) — L2(0, T; H(/p)) such
that || P (Ua) [l L2(0,T: H1(r)) < Co. However, the weak limits of any two weakly convergent sequences

{Pg(l) (Ug)}es0 and{ Pg(z)(ug)}g>o are the same. Indeed, let us assume that
PD(u,) - ui andP? (u,) — uy weakly inL2(0, T; HL(1p)).

Let . be the characteristic function of the s€t Sinceyr, is thee O-periodic function, it follows
that y ., — |C| weakly= in L2(B) ase — 0. Then passing to the limit in the integral identity

]
/ / 21, PD (U)o (x) y (tylx ci
0 Io

i
- / / 2 PO U)p Oy ®dxdt, vy eCPO,T), Yo e HY(ID),
0 Io

ase tends to zero, we just conclude that

T T
o [ [ weowaxa=ici [ [ wpcouixdt. vy ecFO.T). Yo e Hi.
0 Iy 0 Io

Henceu] = u3 and we have obtained the required.
In view of this, we give the following definition.

DEFINITION 3.1 We say that a sequence of contrfls e L2, T; Hl(Fg))}g>0 is weakly con-
vergent to a functionu* with respect to the spade?(0, T; H1(/p)) if some sequence of its images
{P:(uz)}e=0 C L2(0, T; H(I7)) converges tar* weakly inL2(0, T; H1(1p)).

As a consequence, we have the following result.

LEMMA 3.1 Any sequence of admissible contrls € U2}, ¢ is relatively compact with respect to
the weak convergence introduced above. Moreover, its weak litnitelongs to the sdtl; = {u €

L2(0, T; H1(FO))|||U|||_2(0,T;H1(ro)) < Co}.

Now, we give the convergence formalism for the sequences of the[yype Xﬂg}. By analogy with
Brizzi & Chalot (1997, we extend each of the functign by zero into the whole of domaif2, namely,

y&‘(x)a X € Q&‘y
Ve (X) = [ (3.3)
0, XeQ\Q,,

and introduce the following functiong;f (x) = y.(x) if x € QT andy, (x) = V.(x) if x € Q™.
Thanks to the rectilinear boundaries®fwith respect tox,, we have

0 (V) =0y (Yz)  IN Q7. (3.4)

This means thay,~ € L2(0, T; Wz(o’l)(Q_)), WhereWZ(O’l)(Q_) is the anisotropic Sobolev space
{v e L2(Q7): oxv € L2(Q7)}.
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Let yc be the(d-periodic characteristic function of the 9@t It is easy to see thatc(-/¢) — |C|
weakly- in L>®(B) ase — 0, whereB = (0,a)"~! and|C| is the (n — 1)-dimensional Lebesgue
measure oC. We recall also that (serizzi & Chalot, 1997)

Xo- = ICl weakly= in L>(Q7) ase - 0, (3.5)
xo,nx = |IC|  weakly+ in L®(2) ase — O, (3.6)
xr. = |C| weakly-+ in L®(Ip) ase — 0. (3.7)

DEFINITION 3.2 We say that a sequen@gg € X/,E}£>0 is weakly convergent to a functiop, =
(yF, y7) (with respect to the spade?(0, T; HL(Q 1) x Wz(o’l)(Q—))) ase tends to zero (in symbols,
Yo~ ¥e = (Y55, y;) if:

(@) yF — yf weakly inL2(0, T; HY(Q1));

(b) .~ — ICly; weakly inL2(0, T; W% (27)).

To show the correctness of this definition, we prove the following compactness property.

PROPOSITION3.1 Let{yg € Xﬂg} be a bounded sequence. Then there exist a subsedyence o

and a function

>0
yo= (¢, ¥5) € L20, T; HY(@T)) x L0, T; WP (27))

such thaty,s ~ yo = (Y5, Yo )-
Proof. In accordance with the initial assumptions, there exists a conStan0 independent of such
that|y:|Ix,, < C.Hence,
1Yz, i+ + 1¥: 1207w 0y + 1¥ell 2.2 dusyy < C-

Therefore, there exist a subsequefic® of {¢} (still denoted bys) and elementslar e L%0,T; H?
(2Q71)), ¥y € L30, T; L2(Q7)) andy* € L?(0, T; L2(27)) such that

AR weakly inL2(0, T; H1(Q™)),

¥ — v =1|Cly; weaklyinL?(0, T; L2(Q7)), o)

Ve = y* weakly in the scalé.2(0, T; L2(Q~, du.)),

Y, = IClox,y, Wweakly inL?(0, T; L2(Q27)).

REMARK 3.1 Here, we have used the fact that the bounded seqiigrice, is relatively compact with
respect to the weak convergence{lr?(0, T; L2(2~, du.))}. Indeed, since limsyp, fOT Jo-(¥:)?
du.dt < 400, there exist a subsequenieé} of {¢} (still denoted by) and an elemeny* € L2(0, T;
L2(27)) such that (se&hikov, 2000 lim, 0 [3 [,- @wYedu.dt = [ [,— pwy*dxdt for any
functionsp € C3°(R") andy e C°(R).

Note also that the last limit ir3(8) is the consequence d.4). Moreover, by analogy witBrizzi &
Chalot(1997) one can easily prove the following relation:

Yo =Y, ae.on0T)xJ, (3.9

i.e. in this case the traces of the limit functiafy , y5') coincide onZX.
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Obviously, to establish the fagt ~~ (yar . ¥p ) it suffices to prove that
y'=y, ae.in0,T)xQ". (3.10)

For this, we introduce some periodic finite Borel measum@n R". Let (O, = [0, 1)" be the cell of
periodicity forv. Assume that is the probability measure, concentrated and uniformly distributed on
the setC x [0, 1), sofDn dv = 1. Itis easy to see that for any smooth function, the equality

/ fdv =[L£"(C x [0, 1))]-1/

fdx = |C|-1/ f dx (3.11)
On Cx[0,1) Cx[0,1)

is valid. Now, define a scaling measurg by the relationv, (A) = ¢"v(e~1A), whereA is an arbi-
trary Borel set inR" ande™1A = {¢~1x, x € A}. Then the measure, is e-periodic, andv, (e[]) =

gl fDn dv = &". Therefore, this measure weakly converges to the Lebesgue measure> a8, i.e.
lim; 0 [gn@ v, = [pnpdx forall g € C3°(R"). It means that the weak limits of both the sequences
{y7 € L%(0, T; L?(Q~,du,))} and{y; e L(0, T; L2(2~, dv,))} in the sense of Remark 4.1 have to
be the same, namely,

T T
Iim/ / oWy, d,ugdtz/ / pwy* dxdt
e-0Jo Jo- 0o Jo-

T
= Iim/ / pwy, O dt. (3.12)
0 Q-

e—0

At the same time for every functiop, € X, and every fixed:, the setQ~ can be covered by a
system of cubes with edges We denote these cubes by the symbdlS + k). Then in accordance
with the definition of measure;, we may write down

T T
/ / V{dedt=IC|/ Z/ Y- pwe" dv(x/e)dt
0 JOo- 0 F/e@+k))

]
—ic1 [ [ vrewana (3.13)
0 Q-

wherep € C5°(R") andy e C5°(R). Now, using 8.13 and .12 and taking into account the fact that
Y. — ICly, weakly inL2(0, T; L2(27)) ase — 0, we obtain

T T
/ / IClyp oy dx dt = lim / / V. pwdxdt
0 Jo- ¢e=0Jo Jo-

T T
—imici [ [ yrowana=ici[ [ yowo,
¢—0 0 Jo- 0 Jo-

forall 9 € C3°(R") andy e C3°(R). Hencey* = y; and we obtain the required proposition. [

DEFINITION 3.3 We say that a sequenf@l,, Y:) € Y.}.-0 is w2-convergent to a tripletu, y*, y™)

ase tends to zerc(in symbols,(u., Y:) f (u, y+, y—)) if u;, = uin the sense of DefinitioB.1 and
y. ~ (yT, y7) in the sense of DefinitioB.2 (here the spac¥, is defined in 8.2)).
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As follows from the result obtained above and estimatg) the following statement holds.
PROPOSITION3.2 Let{(u., ¥:) € £2}.~0 be any sequence of admissible pairs forﬁjeproblem.
Then there exist a subsequerée., y./)}..~o and a triplet

Uy, y7) e Y3 :=L2(0, T; H(I) x L3O, T; HY(@) x L20, T; WP (@7))  (3.14)
such thau € U, and(u,, y,/) s (u, y*, y7), where

Ua = {U € L2(0’ T, Hl(ro))}”u”LZ(O,T;Hl([b)) S CO} . (315)

3.2 The convergence concept ﬁBﬁ’—probIems

Let {(u;, ¥:)}:>0 be any sequence of admissible pairsmﬁrproblems. Since we cannot assert in this
case the existence of extension operaRgrtU!? — L2(0, T; H(Ip)) that would be uniformly bounded

with respect tce, it follows that we have to give another convergence concept in the variable space
(3.2). Let us denote by, the extension by zero of a functian e L2(0, T; H1(7})) into Ip. Then

U; € L%(0, T; L%(1)).

DEFINITION 3.4 A sequence{(ug, ;) € L2, T; HY(I})) x XM}‘g>0 is said to bewb—convergent

wb . .
to a triplet(u, y*, y7) (in symbols,(u;, y;) = (u,y*,y™)) ase tends to zero ifi, — u weakly in
L2(0, T; L2(Jp)) andy, ~» (yT, y7) in the sense of DefinitioB.3.
Then, taking the definition of the sdté), estimate 2.5) and Propositior8.1into account, we have
the following obvious result.

PROPOSITION3.3 Let{(ug, V) € Ef}g>o be a sequence of admissible pairs for]ﬂﬂeproblems such
that sup. o IlY:llx,, < +oo. Then there exist a subsequerite., y.)}.~o and a triplet

(u,y*,y7) € Y8 := L2(0, T; L2(1p)) x L?(0, T; HY(@*)) x L2(0, T; WP (@7))  (3.16)

b
for which (U, y,) = (u, y*+,y~) ase’ — 0.

Let us denote by? the topology associated with?-convergence Vg and byzP the topology
associated witlw?-convergence ith. Then as follows from Propositiorss2 and3.3, these topologies
can be taken as the most natural ones for the homogenization of the optimal control prplants
PP?, respectively.

4. Definition of the homogenized problems and their properties

As follows from the previous sections, each of the sets of admissible soltELb(is: a, b) belongs to

the corresponding Banach spacg (C Y,). We introduce the convergence concept of such sets using
the w'-sequential version of the set convergence in Kuratowski's sens@ésg®y 1997 hereinafter

i =a,b).

DEFINITION 4.1 We say that a sef; C Yio is the sequentiab'-limit in the Kuratowski's sense (or
K (w")-limit) of the sequenc¢=] c Y.,}..¢ if the following conditions are satisfied:
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1. for every triplet(u, y*, y~) € &j, there exist a sequen¢@l,, y;)}.-o w' -converging to(u, y,
y~) and a positive valuey > 0 such thatu,, y;) € _' for everye € (0, &9);

2. for every sequence of admissible pdifsk, yk) € Eé',k}keN such thaty — 0 and(uk, Yk) &'
(u, y*, y") ask = oo, the triplet(u, y*, y~) belongs toz;.

Let us show that the sets of admissible pairs fortfigoroblems possess the compactness property
with respect to th& (w?)-convergence.

THEOREM4.1 For the sequence of s¢i52}. - o, there exist a subsequer{c@j}g/>0 andaseE, C Y}
such thatk (w?) —limy 0 £5 = Za.

Proof. We begin with the obvious fact that the?-convergence of any sequence of admissible pairs
{(us, ¥e) € E23),-0 is equivalent to the weak convergence of its imége.(u.), y,", ¥, )}.-o0 in the
spaceYd = L2(0, T; H1(Ip)) x L2(0, T; HL(@1)) x L2(0, T; WP (27)). Since the spac# is
separable and reflexive, there exists a metseich that for any sequengpk = (wk, Yk, vk)}keN in Y§
the following conditions are equivalent (see, &gnford & Schwartz1957):
() {pc}— p = (w, y,v) weakly inY§; (jj) {p«} is bounded ifY§ andd(px, p) — 0 ask — oo.
Let n be the topology associated to the mettion Ya and{_ a}F>0 be the image sequence of the sets
Z2in Y3, ie. 52 = {(Pe(U), Y. §7) : (U, Ye) € 3

Slnce they- topology has a countable base, by the Kuratowski compactness theoreDa(déasq
1993 there exists a subsequence{&?},..o still denoted by{Z?}.. o that K (i7)-converges to a set
A c Y§. Now, we prove that the sek coincides withK (w®)-limit of the family {£2},- 0. With this
aim, it is enough to show that

AC Za, (4.2)

where byZ, we denoted th& (w?)-limit of the sequencé= 2}, o in the sense of Definitiod. 1

First, let us verify inclusion4.1). Let (u, y*, y~) be any triplet inY} for which one can found a
sequence(uk, Yk)}ken, w2-converging to(u, y*, y™), and a subsequenée}ken such thai(uk, yk) €
Z& for everyk € N. Then(u, y*,y™) e 5§ by Definition4.1 Let {Px} be any sequence of the ex-
tension operator®: L2(0, T; H1(73)) — L2(0, T; H1(Zp)). Then{(Puk, Y, % )} — (U, y*, y7)
weakly inY3, and(Pguk, yk Vi) € _a for everyk e N. Therefore, the equivalence between condi-
tions (j) and (jj) yieldsy-convergence o{(Pkuk Vi, Y ) to (u, yt, y7). Hence,(u, y™, y~) € Aby
definition of Kuratowski’s limit. So, inclusiord(1) is proved.

Now we verify @.2). Let (u, y*, y™) be any triplet ofA. Then there exists a sequenge;, p.,
0:)}e~0 n-converging tau, y+, y~) such thaiov,, p;., d.) € =, for ¢ small enough. It follows that each
pair (p;, q.) can be represented @ = y;, g. = ¥, wherey, is a weak solution of the boundary-
value problem 1.2) underu, = v.|r,. However, the realization of the conditiqn,, p, 0.) € z,
implies that the paiku,, y.) is admissible, i.e(u., y.) € 2. Since the sequence of functiofis.}
is bounded inL2(0, T; H1(I1)) (v; € Ua by definition of the setsS,), we get that the sequence of
corresponding solution& p;, 0. )}:~0 is bounded inL2(0, T; H1(@1)) x L2(0, T; Wz(o’l)(Q—)) as
well. Hence, the equivalence between conditions (j) and (jj) yields the weak convergence of the sequence
{(ve, Pe» ) }es0 10 (U, YT, y7). Butin view of Definition3.3, it is equivalent to thev®-convergence of
its prototype{(U, V:)}e>0t0 (U, y*, y7). Thus,(u, yT, y~) € &5 by Definition4.1 Thus, the theorem
is proved. O
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DEFINITION 4.2 We say thaPP-problem satisfies the property) if for any

ueUp = fo e LAOT) x 10): IvllLzqomxry < VICICo)

there exists a sequenda, < Ugb}g>o such thatli, — u weakly in L2((0, T) x Ip) and Sup. g
”uEHLZ(O,T;Hl(l})) < +400.

Then the following compactness property for the sgfswith respect to the (w®)-convergence
takes place.

THEOREM4.2 If IP’E—probIem possesses thif-property, then the sequence of the s{éf§ € Yeleso
has a subsequence (still denotedd)yfor which the exists a non-empty sé&y, C Yg which is the
K (wP)-limit of {ZP},-0 with respect to the spade.

REMARK 4.1 It is well known (seéal Masq 1993 that the Kuratowski’'s limitAg of a sequence
of subsetq An}nen in a topological spacéX, ) does not change if we replace the sétsby their
r-closures, i.e.

K(r)— nIi_)mOO An = Ag=K(r)— nIi_)mOo cl; An

(z° denotes the product of the weak topologies of the sphés T; L2(F )) andL2(0 T H1(Q.))).
Thus, theK (w®)-limit of {ZP},. ¢ coincides with theK (wP)-limit of zP-closures{cl,nZP c L%(0, T;

L2(I7) x Xy, }-

Let us turn back to the main object of this section, namely, to the sequences of constrained mini-
mization problems3.1). Using the concept of variational convergence (segut & Leugering 2001)
we give the definition of the ‘appropriate limits’ for these sequences.

DEFINITION 4.3 We say that the minimization problem

UL CRS y‘)> (i=ab), (4.3)

wherez; C YO, is the variationalo' -limit of the sequence3(1) with respect to thev' -convergence if:
(i) =i is the K (w')-limit of the sets{= '} (i) for any triplet (u, y*, y~) € &j and for any sequence

w'

{(uk, y) € _Fk}kEN such thakx — 0 and(ug, yk) = (u, y*, y~) ask — oo, we have

li(u,yT,y") < I|m|nf le (Uk, YK); (4.4)

(iii) for every triplet (u, y*, y~) € Zi, there exist a positive constasf and a sequencu,, Y;)}:-o
such that

(Us, o) € Z1 forevery < eo; (Us, Y) =5 (U, y*, y7): 1w, y*, y) > lim Sélpl ¢(Us, ¥e). (4.5)
E—>
REMARK 4.2 In fact, Definition4.3is the natural extension of the well-known notion/ofconvergence.
We will prove that the variationab' -convergence of the corresponding sequeBcH o problem 4.3
implies the convergence of the minimum values.obn u' to the minimum one of; on =j; in addition
everyw'-cluster ‘point’ of the sequence of the minimizers fgiis the minimizer forl;.
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THEOREM4.3 Assume that the constrained minimization problem

< Inf |a(Ua y+9 y_) (46)
(uyt,y-)eZa

is the variationako®-limit of the corresponding sequenc& ) and this problem has a unique solution
(ud, (yHt, (yd7) in Za. Let {(u?, y?) € £8}..0 be a sequence of the optimal pairs Ej-problem.
Then

2,y 5 (W, (), (y3)7) ase > 0, (4.7)
and furthermore
Inf |a(U, y+s y_) = |a(ua, (ya)+9 (ya)_) = Ilm Ié(u?s y?) (48)
(u,y*t,y-)eZa e—0

Proof. Let {( o ygk) € Ej‘k}kEN be anyw?&-convergent subsequence of the sequence of minimizers
{(u2, y?)}.-0. Note that in view of PropositioB.2such choice is always possible. l(at, (y*)*, (y*)7)

be itsw?®-limit. Then, by Definition4.1, we have(u*, (y*)*, (y*)7) € Za. Moreover, due to part (i) of
Definition 4.3,

lim inf (u,g;ieggk la (U, y) = liminf 1, (WB,ya) > la(u*, (yH™, (y))

> min lauyt,yT) =1, ()t (yH ), (4.9)
(u,y*t,y")eza

where(u?, (y3)*, (y3)™) € Z4 is the unique solution of the limit probler.@).
As follows from Definition4.3 (see (iii)) there exist a constas® > 0 and a sequendgu?, y2)}

w?

such thaiu?, y2) e =2 for all valuese € (0, £9), (U2, y3) = (U3, (y»)*, (y?)") ase — 0 and
la(ud, (ya)+ (y»~ )> limsup._, o l:(Us, Ye). Using this fact, we get

min__ la(u,y*, y7) = la@®, (y)*, (y¥)7) > limsupl, (u;, ¥.)

(uy*,y")eZa e—0
>limsup min. I(u y) > limsup m|n gk(u, Y)
en0 (U,Y)eZE koo (UY)EES
=lim suplgk(ugk, ygk) (4.10)
k— o0

From @.9) it follows that liminfy_, o 1o (U3, Y3 ) > limsup., o g (U3 . Y3 ). Combining ¢.9) and
(4.10, we conclude thata (U3, (Y*)*, (y3)™) = limk_ oo Ming, ez b (U, y) and

la(U*, (y)™*, (y)7) = la(@®, (yH*, (yH7) = w y+myi[‘)€: la(u, y*©, y7).

Taking into account these relations and the uniqueness of the solution to probl&mwe
obtain (u*, (y*)*, (y*)7) = (U, (y®»)T, (y®)7). Since this equality holds for the limits of any con-
verging subsequences ¢fu2, y?)}.-o, it yields that(u?, (y*)*, (y?)7) is the w?-limit of the se-
quence{(u, y?)}.-o0. Making for the sequence of minimizers what we did before with the subsequence



476 C.D'APICEET AL.

{( £k y‘k)}keN’ we obtain

lim inf min ey, y)_I|m|an (U2, y2) > lau?, (yH T, (yH7)

e—>0 (uyes
= min la(u, y*,y7) > limsupl,(ug, y,) > Ilmsup m|n I U, y)
(U Yty )eEa =0 e—0 UYy)eZg
_llmSUpl (u‘m yp)
e—0
Thus, the relations4(8) hold. O

Using the same arguments and taking into accountAfegroperty, one can prove the analogous
result for the variationab-limits.

THEOREM4.4 Assume that the constrained minimization problem

< inf lb(u, y*, y7) (4.11)
(u,y*t,y-)ezp

is the variationakoP-limit of the corresponding sequencg ) and this problem has a unique solution
(WP, (YO)+, (y?)7) € Zp C Y5 Let{(ul, yP) € = b}Do be a sequence of optimal pairsif-problems

such that sup o [Y?llx, < 4oo. Then(u®, y°) LN (P, (y9)t, (y?)7) ase — 0, and furthermore

He

inf  Ip(u, ¥y, y7) = 1pWP, (YO)F, (y?)7) = hml(ug,yg
(u,yt,y-)ezp

DEFINITION 4.4 We say that the family of optimal control probler{lﬁég}g>o (i = a, b) admits the
homogenization as — 0 with respect to thev'-convergence if for the corresponding sequence of
constrained minimization problem3.(), there exists a variational limit which can be represented in the
form of some optimal control problem. This problem will be called the homogenized ot for

5. Analytical representation of the limit sets of admissible solutions

The main objects of our consideration in this section are the sequences of the sets of admissible pairs
{E& Cc Y.}es0 and{Eg C Y.}¢>0 and its Kuratowski's limits with respect t02- andw? -convergence,
respectively. In view of Theorems1and4.2, we may always suppose that for that sequences there exist
setsZ, and Zp such thatZ, = K (w?)—lim,_,0 Z2 and Zp = K (w°)—lim,_,0 £2. To formulate our

next results, we introduce the following spakeQ) = {y e L2(Q): (%VH e L2(Q7),y e HY(@h)}

and endow it with the scalar product

(y,v)vm):/ Vy-Vvdx+/ yvdx+|C|/ axnyaxnvdx+(|0|+ko|acm)/ yo dx.
Q+ Q+ Q- Q-

By analogy withEspositcet al. (1997, it can easily be shown that(Q) is a Hilbert space anti1(2)

is dense inV(L). Moreover, as follows from3.8-3.9), for any functiony, = (y;", y;), which is a weak
limit in the sense of Definitior8.2, we have (L, = (yF, y,) € L2(0, T; V(Q)) and )y (., ) =

y. (-, -) almost everywhere of0, T) x X'. Moreover, it should be stressed here that any function of
V(L) has atrace on any hyperplabhen Q~ such that. = {(X/, xn) € Q7 X, = constank
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5.1 Recovery of the seTy

The crucial point in the study of thi€ (w®)-limit properties for the sequence of admissible pairs is the
following result.

LEMMA 5.1 Let{u.}.-o be any sequence of admissible controls fgrproblems which is weakly
convergent to a functiong in L2(0, T; H1(1p)). Let {yg € Xﬂs} be the corresponding solutions of

problem (..2). Then(u, Y;) N (Ug, vg, vg) ase — 0, where

vg (X), xeQf,

l)o(X) = ( (5-1)

vy (X), xeQ7,
is a unique weak solution ih?(0, T; V(R)) of the following limit problem:

(1)6|r f— Axvg —}—vc')|r =fo, IN(OT)xQ",

C oC .
(va)/ — 6%}1)6 + WUJ =fg, INOT)xQ,
oo =0, inOT)xoQt\ 2,

v0qg ( ) \ (52)

vg =Uog, 0n(0,T)x Ip,

vg =vg, Ox0g =IClox,0y, 0on(0,T)x X,

00(0,x) = yO(x), aexe Q.
REMARK 5.1 Here, the weak formulation of problem.?) means that
vo € L2(0, T; V(2)),
T T
—/0 /Q(xm + IClxo-)vop '’ dxdt+/0 (v0, P)y(o)w dt

(5.3)

.
=/O /(XQ++ICIXQ—)fo¢V/dth, Vo e V(Q; ),
Q
Yy e CPO,T),

vy =Uoon(0,T) x Ip, 0o(0,x) =y°(x) a.exe Q,
where
V(Q; To) = {1) e L2(Q): oy0 € LA(Q7),0 e HY(QH),0 =0 ae. onro}.

Moreover, in this case we hawg € L2(0, T; (V(Q))) (seeLions, 1971, p. 107).

Proof. From PropositiorB8.1, it follows that there exist a subsequer{e& of {¢} (still denoted by{¢})
and a triplet(uo, vg,vg) € YS such that(u,, y.) Z (uo, v;{,og) ase — 0. Similar to the proof of
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Proposition3.1 (see relations3.8) and @.9)), we can show that

yi — od weakly inL2(0, T; HY(Q1)),
Y. — IClog weakly inL2(0, T; L2(Q27)), 54
vg =0y, Ox0g = ICloxzvg, a.e.on0,T)x X,
Y, = vy weakly in{L2(0, T; L2(2~, du,))}.
Moreover, there exist functions € L2(0, T; L?(27)) (i = 1,...,n — 1) such that
Vi¥s = (71, .., yn—1, IClovgy /0%n) weakly in [L2(0, T; LZ(27))]". (5.5)
Let us prove that the functios, satisfies the following boundary condition:
vy = Up almost everywhere or(0, T) x 7o. (5.6)

We note that any functiori € V(Q) has a tracef | € L2(Ip) (seeBrizzi & Chalot, 1997, so the
equality 6.6) has a sense. It is easy to see that the following statements hold:

V. = xr,P.(u;), ae.on0,T)x Iy, Ve>0, (5.7)
%1, P:(Uy) = |Clup  weakly inL?((0, T) x Ip) (5.8)

(as product of strongly and weakly convergent sequences). Then from the integral identity

T T
/ / Y, oy dx'dt =— / / oY, /oxXnpw dx dt
0 Io 0 Q-

-
—/ / Y. 0w /0Xng dx dt,
0 Q-

Vo e C°(R"; 027\ Ip), Vy € CF(R), (5.9)

whereCi°(R"; 027 \ Ip) = {p € CP(R"): ¢ = 00ndQ~ \ Io}, we immediately gety, )|, —
ICl(vg)|r, weakly in L2((0, T) x Ip). Thus, passing to the limit in5(7) ase — 0, we obtain the
required relation§.6).

Now, let us show that the functiam is the unique weak solution of problers.2). With this aim,
we rewrite the integral identity2(3) as follows:

T T T
—/ / yj(py/’dxdt—/ / Vg_gol//’dxdt—i-/ / Vyl - Vo dxdt
0 Jor 0 Jo- 0o Jo+
T — T
+/ / Vy;'V¢Wdth+/ / Yoy dxdt
0 Jo 0o Jo+
T T
+/ / Vg_fﬂl//dxdt+ko|6CIH/ / Y. oy du, dt
0 Q- 0 o-

T T
:/ / feoy dxdt +/ / Xo- fepy dxdt. (5.10)
0 Jo+ 0 Jo- 7F
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Passing to the limit ing.10 ase — 0 and using the propertie8.f), (5.4) and 6.5), we get

T T T
—/ / vargﬂl///dxdt—lCl/ / vaqot//dxdt—i—/ / Vod - Vo dxdt
0 o+ 0 Q- 0 o+

T n-1 T
“, L_Eyi<a¢/axi)wdxdt+|C| | [ @ rox@e oy axen

T T
+/ / vggol//dxdt+|C|/ / vg ey dxdt
0 Qt 0 Q-
T T
+ko|6C|H/ / l)agol//dthZ/ / fop y dx dt
0 Q- 0 o+

T
+|C|/ / fopy dxdt, Ve e CPR"; Ip), Yy € CF (O, T). (5.11)
0 Jo-
Let us fixi € {1,...,n — 1} and Ietu)L be a sequence W1 (Q ™) satisfying the following
conditions:
w'é — X strongly inL*(Q7), (5.12)
Dw' =0 ae.in@; (5.13)

for everye > 0. The existence of such sequence is provesrinzi & Chalot (1997 andEspositcet al.
(1997. Let us prove thapi = 0 a.e. in(0, T) x Q~. Take the following test functiongs = w.¢ and
¢ = Xi¢ with ¢ € C5°(27) in (5.10. Then, by virtue of§.13, we have

T . T — .
—/ / Y !y’ dx dt —I—/ / Vy: - Vowly dxdt
0 Q- 0 -

T
+/ A ¢w l//dth+k0|8C|H/ / A gzﬁu) wdu, dt
o-

/ [ xor tpulwdxa, (5.14)

// y.5¢xll//dth+// Vyé - V(X)) dx dt

+/ o Y. ¢X|vldth+ko|5C|H/ / Y. dXiy du, dt

/ / Yo fedXiy dxdt, (5.15)
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for everye > 0,¢ € C3°(27) andy € C5°(0, T). Hence, passing to the limitir5(14) and 6.15 as
& — 0, and using the propertie8.p), (5.4), (5.5, (5.12 and Propositior3.1, we obtain

T T n-1
—|C|/ / 0o PXi y//dxdt-l—/ / Zyk(6¢>/8xk)xit//dxdt
0 Jo- 0o Jeo .,
T T
+|C|/ / (avg/axn)(aqﬁ/axn)xiy/dxdt+|C|/ / Vg PXi w dx dt
0 Jo- 0o Jo-

T T
+ko|aC|H// vggbxiz//dxdt=|C|// fobx;  dx dt, (5.16)
0 Q- 0 Q-
T T n-1
—i0l [ [ vgonwaxar [ ]S o onow dxat
0o Jo- o Je-i=

T T
—|—|C|/O /Q_(aug/axn)(agé/axn)xiy/dxdt+|C|/O /Q_ Vg PXi w dx dt

T T
+ko|aC|H/ / vy $Xiy dxdt = |C|/ / fodx; w dx dt. (5.17)
o Jo- o Jo-

Comparing 5.16) with (5.17) we conclude thayoT Jo-7kpwdxdt =0,vk e {1,...,n—-1},V¢ €
Cyo(Q7) andVy € C°(0, T). Thus,y; = 0a.e.in(0, T) x 2~ and we obtain the required. As for
the functionvg we have the following identity:

T T
—/ / va'(oy/’dxdt—lCl/ / v ey’ dxdt
0 o+ 0 Q-

T T
+/ / Vogd - Vou dxdt+|C|/ / (0vg /0%n) (89 /0%n) w dx dt
0 ot 0 Q-

T T
+/ / va'q)l//dxdt—HCl/ / vy @y dxdt
0 o+t 0 Q-

T T
+ko|8C|H/ / oo_(pl//dxdtz/ / fop w dx dt
0 Q- 0 o+

.
+|C|/ / fopy dxdt, Ve e CPR"; Ip), Vy e CFO,T). (5.18)
0 Q-

However, using the facts th@°(R"; Ip) is dense inH1(Q; Ip) = {p € H1(Q): ¢ = 00onTp} and
H1(Q; Ip) is dense in

V(@2; To) = {v e L2(Q): o0 € LA(Q7),0 e HYQY), v=0ae. onFo}
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with the continuous injectio 1(Q; Ip) < V(Q; I'p) (seeEspositoet al, 1997, we observe that the
integral identity 6.18) is valid withp € V(Q; Ip). Hence, it can be rewritten in the form

T T
—/O /Q(XQ++ICI)(Q—)vo<pzz/’dxdt+/o (v0, p)v (o) dt

T
:/ / (xo+ +1Clxo-) fopy dxdt, Ve e V(Q;1Ip), Yy € Cy°(0,T). (5.19)
0 Q

Besides, taking the initial suppositioh.) into account and using the approactbef Maioet al. (2004,

one can prove the relatian(0, x) = y°(x) a.e. inQ. Following the standard Hilbert space method and
the arguments iiDe Maioet al. (2004, we can state that the functieg is a unique weak solution of
problem 6.2) in the sense of Remaik 1 However, due to the uniqueness of the solution to problem
(5.2, the above reasoning holds for any subsequen¢e}ahosen at the beginning of the proof. Thus,
the lemma is proved. a

We are now in a position to state the first important result which deals with the recovery problem of
the Kuratowski'skK (w?)-limit set =5 in the analytical form.

THEOREM 5.1 For the sequence of the sets of admissible pair®¥guroblems{=2}, there exists a
non-emptyK (w®)-limit set Z5 c Y§ with the following structure:

Up € Ua,

(1)8')’— Axvg—l—va" = fo, in (0,T) x Q7,

_ _ C| + koloC _
sy — o + S KICh
C|
= fo, IN(O, T) x Q,

(1]

(uo, 1)6", vgy) (5.20)

oyog =0,in(0,T) x 021\ %,
vy = Ug, on(0, T) x I,

var =g, 8Xnvg = |C|ox 09, ON(0, T) x X,

00(0, x) = Y2(x), a.ex e Q.

Here,Ua = {u € L2(0, T; HY(T0)) : [lull L2(0,7:H1(ry)) < Co}-

Proof. First of all we note that in view of Theorerh1, the sequence of set&2 c Y2} is relatively
compact with respect t& (w?)-convergence. We show that tie(w?)-limit set exists for the whole
sequence and it can be represented in the fd&20(. For this, in accordance with the definition of
K (w®)-limit, we have to verify conditions (1) and (2) of Definitighl From the previous lemma, we
see that the sef, is non-empty. Le(u, y*, y~) be any triplet of the seE,. To construct a sequence
{(Ug, Y:)}e>0 wi-converging to(u, y*, y~), we put:u, € L2(0, T; HL(I})) is the restriction of the
controlu € Uy on I, given above, ang; is the corresponding to, weak solution of the boundary-
value problem1.2). Then, in view of DefinitiorB3.1, we haveu, — u weakly with respect to the space

L2(0, T; HY(1)). Further, using Lemma.1we obtain(u,, y.) = (U, o, vy), where(u, of, o) is
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a solution inL2(0, T; V(£2)) of the limit problem 6.2). Since this problem has a unique solution, we
immediately deduce thau, v:{, vy) = (u, y*, y7), thereby property (1) of Definitiod.1is valid.

The second condition of this definition is the evident consequence of Lebnbend the lower
semicontinuity of the norm i.2((0, T) x 7o) with respect to the weak convergence. This concludes
the proof. O

5.2 Recovery of the sefy,

To establish the structure of the KuratowsKk{gwP)-limit set =, we give a result which not only will
be useful in the sequel but also seems to be interepinge(for similar one in more complicated case
of perforated domains, s&esavan & Saint Jean Paulit999.

PROPOSITIONS.1 For every bounded sequerfog € L2(0, T; L2(7}))},-0 such thafi, — u, weakly
in L2((0, T) x Ip), the following inequality holds:

T T
Iiminf/ / u§dx’dt>|c:|—1/ / u? dx’ dt. (5.21)
e—0 Jo I, 0 To

The following assertion can be viewed as an analogue of Lefinaith respect tasP-convergence.

LEMMA 5.2 Let{u, € L%(0, T; HX(7}))}.-0 be any sequence of admissible controls[E?@rproblems
such thafl, — u, weakly inL2((0, T) x Ip). Let{y,} be the corresponding solutions of the parabolic
b

problem (.2) for which sup. o [y llx,. < 4oo. Then(ug, y,) N (U, uaL, vy ) ase — 0, where

He

vg (X), xeQF,
vo(X) = (5.22)
vg (X), XeQ,
is a unique weak solution ih?(0, T; V(R)) of the following limit problem:
(vd) — Axog +vd = fo, N0, T) x QF,
C oC .
(vg) — 63nva + WDO_ =fo, INOT)xQ",
aog =0, in(0,T)yxoQt\ 2%, (5.23)
vo =ICI7tu,,  on(0,T) x I,
vg =vg, Ox0g =IClox,0y, 0On(0,T) x X,
v0(0,x) = y°(x), aexeQ.
Proof. As follows from Propositior8.3and Lemméb.1, we have to show that the relation
vy =ICI"tu.on (0, T) x Iy (5.24)

holds true. For this, we note thé,”)|, — [Cl(vy)lr, Weakly inL2((0, T) x Ip) and the following
statements

y. =U, ae.on0,T)x Iy, Ve>D0,

U, > ugp weaklyin L?((0, T) x Ip) (5.25)
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are valid. Then the required relatiob.24) immediately follows from %.25 after passing to the limit in
(5.25 ase — 0. In order to conclude our proof, we have to follow the arguments in the proof of Lemma
5.1closely. O

Now, we are able to prove the theorem concerning the structure of the Kuratowski'%)-limit
setZp.

THEOREMb.2 Let{:b}»o be the sets of admissible pairs ﬁtﬂ problems possessing th&§-property.
Then for this sequence there exists a non-enpty?)-limit set =y, ¢ Y which can be represented in
the form

Uo € Up,
(DS’)’ - Axvg +1)3' = foin (0,T) x QT,

IC| + koloClH _

(0g) = 05,09 + C| Yo

= foin(0, T Q-
(Uo, vg, vg) 0in @, T) > 27, (5.26)

dyog =0in(0,T) x 02T\ Z,

[n)
o
Il

=|CI"tupon (0, T) x I,

vg =g, éxnva' = |C|ox,vq ON(0, T) x X,

00(0, ) = Y(x) a.e.x € Q.

Here,Up = {u € L2((0, T) x 7o) : llull L2¢0.7)x 1) < +/ICICo}.

Proof. To obtain the representatioB.26), we have to verify conditions (1) and (2) of DefinitidriL Let
(u, y*, y7) be any triplet of the sef},. In accordance withX/)-property oﬂP’ -problems, there can be
found awP-convergent tqu, y*, y~ )sequenceé(us, Ve)}.~0 such that(,, ys) er b for everye > 0.

However, due to Lemma.2we have(U,, V;) —> (u, 1)0 ,0g ), Wherep = (1)0 , 0o ) is aweak solution in
L2(0, T; V(R)) of the limit problem 6.23. Since this problem has a unique weak solution (deas,
1971, we immediately deduce thati, uar, vg) = (u,y*",y7). Thus, property (1) of Definitior.1
holds for any triplefu, y*, y~) € Zo.

We now verify the second property of Definitidrl Let {(u, Yk)}key be aw® convergent sequence
for which there exists a sequenfag — 0} such that(uk, y«) € _b forallk e N. Let (u, y*, y™) be

its wP-limit. Then by Propositiors.1, we immediately have

L2(0Tyxry) = VICIT - Ulzom)xro)-

i.e.u e Up . In conclusion, it remains only to apply Lemn3a2 Thus(u,y*,y™) € Zp, and we
obtained the required. This concludes the proof. O

Co = liminf |Juk]|
k— o0
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6. Identification of the cost functionalsl, and Iy
In this section, we show that the cost functionals of the limit constrained minimization problems

< inf la(u, y™, y_)> and < inf Ip(u, yT, y_)> (6.1)

(u,yt,y)eZa (u,y*,y")eZp

can be recovered in an explicit form and their analytical representations are different. We begin with the
following results.

THEOREM 6.1 For the sequence &f-problems 8.1) there exists a variationa?-limit (in the sense
of Definition4.3)

< inf la(u, yT, y‘)>, (6.2)

u,y*t,y-)eZa

where the seE, is defined in .20 and

T T
Ia(u,y+,y—)=/0 /Q+(y+—qo)2dxdt+|C|/o /Fuzdx’dt. (6.3)
0

Proof. In order to obtain the relatior6(3), we verify conditions (ii) and (iii) of Definitior4.3. Let

(u, y*, y7) be any triplet of=, and{(uk, Yk)}keny be aw?-convergent sequence such tkat, yk) 3;;
(u, y=,y"), (ug, yv) € =, for everyk e N, where{e} is a subsequence ¢} converging to zero.
Then using Lemmd.1, the definition of the class of admissible controls and the properties®ef

T T
convergence, we g(?[ / (yj)zdxdt—>/ / (yH)2dx dt,
0o Jo+ o Jo+

T T
/ / uﬁ dx’ dt =/ / xr (nguk)2 dx'dt, foreveryk e N,
0 ng 0 Io

T T
/ / b7 (nguk)zdx/ dt — |C|/ / u?dx'dt ask —» oo
0 Iy 0 Io

(as the limit of the product of weakly and strongly convergent sequences) and, therefore,

T T
liminf ng(uk,yk):/ / (y+—qo)2dx+|C|/ / u?dx’ dt
k— 0o 0 Q0 0 Ip
= |a(U, y+a y_)a (64)

i.e. property (ii) of Definitiord.3is valid.

Similarly, we can show the correctness of the ‘contrary’ inequalit)( Indeed, in this case it is
enough to consider the ‘realized sequer{¢a., y;)} as follows:u, € L2(0, T; H1(})) is the restric-
tion of u € U, on I, andy; is the corresponding to, solution of the boundary-value probleh.).

a
Then, by Lemmab.1 we have(u,, y.) — (u, y*, y7). For the conclusion of this proof, we should
repeat the arguments concerning the correctness of the limit pagsdge ( O
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THEOREMG6.2

< inf Ip(u, yT, y_)> (6.5)

(u,yt,y)ezp

is the variationako®-limit for the sequence dPE-probIems 8.1). Here, the seE}, is defined in $.26)

and
T T
(U, y*, y7) = / / (" — qo)dx + |C| L / / W2 o dt. (6.6)
0 o+ 0 Ip

Proof. To obtain the representatioB.6) it is enough to repeat the same arguments of the proof of
Theorem6.1 and to apply PropositioB.1 and Lemmab.2 In this case, for any sequenf@ik, yk) €
ZP Jken wP-converging tou, y*+, y~) we have

T T
lim inf |gk(uk,yk)>/ / |Vy+|2dxdt+|C|—l/ / u?dx’ dt = lp(u, yt, y7).
k— oo 0 o+ 0 Iy

To verify the correctness of the inequalit§.%), for arbitrary triplet(u, y*,y~) € 5, we have to
construct the special ‘realizing sequen¢@l., y.)} satisfying condition (iii) of Definition4.3. With

this aim, we construct thab-convergent sequendéu,, y.) € Esb}bo to (u, y*, y7) as follows. Let
{U; € L2((0, T) x Ip)} be any sequence suthmat

U[; — U Weakly in LZ((O, T) X FO), ”U{- ” LZ((O,T)XF()) < 4/ |C| . CO

for everye > 0. Since the weak topology &f2((0, T) x Ip) is metrizable on the set
Ob = {u e L0, T) x To): lull2o.m)x ey < VICI - Co}

one can construct a sequenge, € L2((0, T) x Ip)}.-0 satisfying the following condition: each
elementw, is a convex envelope of a finite amount of the eleméut$.- o, andw, — u strongly in
L2((0, T) x Ip). Note that in this case, we have

lwellL2¢0,Tyxrp) < VICI-Co, foreverye > 0.

Thus, a weak convergent sequerjog},-o to u can be taken in the following formu, € L2(0, T;
H(I7)) are elements such thia, — [C| ™ w, [l 20, 7)x 1) < €2

In view of (\V)-property, we can suppose that the sequence of I'{C“IUIUHLZ(O’T;Hl(FE))} is uni-
formly bounded. SincéC| ™1y w, — u weakly in L2((0, T) x Ip) (as the limit of the product of
weakly and strongly convergent sequences) and

Cl ! [ = \//T/ U)cz dx’ dt — \// / —2 dx/dt < C
We llL2((0,T)x I, AT — 0,
LA, )X ?) 0 Io |C| 2 0 Io ICI 1

it follows thatli, — u weakly inL2((0, T) x Ip) andu, UXb for & sufficiently small.
We may always suppose that the elemantshave the representatian, = |C|~1%,, where the
sequencéuw,} is constructed as follows:

L2((0, T) x Ip) > W, — u  strongly inL2((0, T) x Ip),

1@zl 2¢0,1yx 1) < VICI-Co, Ve >0.
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Then

; 2 i -1 -~ 12
!lno ” We ” Lz((O,T)Xl}) = !ino ” |C| XTI, We ” L2((0,T)x o)

e—0

i
~ (e im [ /F 11920 ot = 101Uz g 1)

i.e. for the realizing sequence of the Dirichlet boundary contiwl$, we have

T T
Iim/ / ufdx/dt=|(:|—1/ / u?dx’ dt
¢>0Jo Jr, 0o Jny

andu, e UPforall & > 0.

Let y, be as the corresponding tg solutions of the boundary-value probleth2). Then by (\V)-
Il)b
property and Lemma.2, we have(u,, y.) = (u, y*, y~) and, therefore

T T
limsupl,(u,, P, Ys) = Iim/ / (y; — qo)?dx dt + Iim/ / u? dx’ dt
0Jo Jo+ o Jr,

e—0 &= e—0

T T
2/ / (yt —qo)?dxdt + ICI_l/ / u?dx’ dt.
0 o+t 0 To

This concludes the proof. O

Thus, in accordance with Definitioh4 and the results obtained above we may infer: each of the
constrained minimization problem6.({) can be recovered in the form of some optimal control prob-
lems, namely(P5, ) (see (.1), (1.2), (1.4) and(IPﬁom) (see (.1), (1.2, (1.5). Hence, the probleni&?
andIP’E admit the homogenization astends to zero. However, the corresponding homogenized prob-
lems have the different mathematical descriptions and these differences appear not only in the state
equation and boundary conditions but also in the control constraints and limit cost functionals. In fact,
the reason of this gap phenomenon is the choice of the different topologies for the homogenization of the
original control problem1.2), (1.4) that were associated with?- andwP-convergence, respectively. It
should be stressed that in our case this choice was fated by the characteristic properties of the control
constraints.

In conclusion, we give some results concerning the variational properties of the homogenized prob-
lems. As was noted before, the proble(®§, ) and(]P’ﬁom) have to preserve the well-known variational
property, namely, both optimal pairs and minimal values of the cost functionals for the original problems
have to converge to the corresponding characteristics of the limit optimal control problertenals to
zero. To establish this result, we begin with the following evident assertion.

PROPOSITIONG.1 Each of the limit optimal control problems (s€e8-1.10 and (.13-1.13) has a
unique solution.

Indeed, taking into account the weak lower semicontinuity of the cost functidnals; — R
(i = a, b), the topological properties of their domaifs (i = a, b), and applying the direct method of
calculus of variation, we just obtain the required result.
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Let us denote byu?, (y)*+, (y*)™) e Y3 and (P, (y*)*, (y?)™) € YB the optimal triplets for
(P& ) and(Pp,,.) problems, respectively.
LEMMA 6.1 If the functionsf, and yS satisfy conditionsX.6) and (L.7), then the sequence of optimal

solutions{(u2, y?) e =2} to P2-problems and the corresponding minimal values of the cost functional
(1.1) possess the following properties:

lim 1,(ud, y® =1lim inf 1.(u,,
¢—0 # Uz ¥e) e—0 (Up,y;)e 52 ¢ (Ue, ¥e)

= inf Uyt yT) = laU®, (yHT, (v ), (6.7)
(u,yt,y-)eZa
3, y3) 25 W, (YD), (yA)). (6.8)

Proof. As follows from previous results, for every value othe optimal control problemsl(1-1.4)
has a unique solutio?2, y&) € Z2. Since the sequende@?}..o c U2 is bounded, there exists a
subsequencé:’} of {¢}, which we again denote bf¢}, such tha? — u? e U, weakly with re-

spect to the space?(0, T; H(Ip)) ase — 0. Then, in view of Lemmé.1, we have(u?, y2) LN
U2, (yH™T, (y*)7) ase — 0, where the triple{u?, (y*)*, (y*)™) is the unique solution of problem
(1.8) with the Dirichlet conditiony~ = u? on I'y. By Theorem4.3, we immediately conclude that
(U, (y~, (y 1) is an optimal solution of homogenized problens8(1.10 and property §.7) is
valid. Hence,

W ()7, (D) = W )™, ().
So, we obtained the required result. O

REMARK 6.1 It should be noted that the realization of conditiofi§)(and 6.8) warranty covered by
Lemmas6.1does not imply the strong convergence of optimal stgfes

LEMMA 6.2 Assume that the functionk and yg satisfy conditions 1.6) and (L.7), IP’E-probIem is
solvable for every value > 0 and the sequence of optimal solutidiis?, y°) e =P} for PP-problems
is such that sup ¢ | y?|x,, < + cc. Then

He

lim I&.(uf,yﬁ’)zlim inf le(Ug, Ve)
¢—>0 T 620U, y)eEP

&

= inf lp(u vyt y) = WP, (YD), (v, (6.9)
(u,y*t,y)ezp
U)b _
W2, y2) 5 suP, (yO)t, (y?) ), (6.10)
U — |C| Yy ,uP — 0 strongly inL2((0, T) x Ip). (6.11)

Proof. Using the arguments of the previous lemma and ThedeZnit can be easily checked that
conditions 6.9-6.10 hold. To conclude the proof, it remains to verify the assert@tl). However, in
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view of (3.7) and the fact thaulI? , ¢ 1., 2y, = ICI I IE2 0 1 1) (S€€ 6.9), We get

T T T
/ /(UE—|C|‘1Xpeub)2dx’dt=/ /(ug)zdx/dt—acrl/ / uPTP dx’ dt
0 Io 0 Ie 0 1o
T T
+|C|-2/ / xr,(UP)Zdx dt — |c:|-1/ (uP)? dx’ dt
0 Iy 0 1o

T T
—2|C|_1/ (UP)2 dx’ dt + |C|_1/ (UP)2dx'dt =0 ase — 0O,
0 Io 0 Io

which yields 6.11). This completes the proof. O

7. Conclusion

To emphasize the contribution of this paper, we would like to point out one possible application of the
above results concerning the approximation of the optimal solutions to the original proble sl

enough. Since the computational calculation of the solutions of these problems is very complicated, it is
particularly relevant to define the so-called suboptimal solutions which have to guarantee the closeness
of the corresponding value of the cost functiohalus"?, y$'9) to its minimum fore small enough. In

view of this we introduce the following concept.

DEFINITION 7.1 We say that a sequence of functi¢ad} is asymptotically suboptimal fdF2-problem
if for every§ > 0 there issg > 0 such that

inf le(Ug, V) — |g(U§, 75) <9, Ve > eo,

(UsaYs)EES
where byy. = Y. (U2) we denote the corresponding solution of the parabolic probles). (

As follows from Propositioré.1 each of the limit optimal control problem4.8-1.10 and (.11~
1.13 has a unique solution. Then Lemrfal anda priori estimate 2.5 immediately lead us to the
following result.

THEOREM 7.1 Let (u?, (y?)*, (y?)7) e Y§ be an optimal solution for the homogeniz€ef  )-
problem. Then the sequenfi€®|, }.- o is asymptotically suboptimal fd2-problem.

After minor modifications, the similar result can be established@feproblem.

In conclusion, we would like to note that the result of the homogenization of optimal control prob-
lems may essentially depend on the differential properties of its solutions. Choosing different topologies
on the space of the ‘control state’, the corresponding limit optimal control problems may have drasti-
cally different mathematical descriptions. Thus, the choice of such topologies is a very important and
non-trivial matter when dealing with the questions of asymptotic behaviour of the optimal control prob-
lems. In the theory of boundary-value problems, this fact is called the Lavrentieff phenomenon (see
Zhikov & Lukkassen2001).
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