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Abstract We study an optimal control problem for the mixed boundary value prob-
lem for an elastic body with quasistatic evolution of an internal damage variable. We
use the damage field ζ = ζ (t,x) as an internal variable which measures the fractional
decrease in the stress-strain response. When ζ = 1 the material is damage-free, when
ζ = 0 the material is completely damaged, and for 0 < ζ < 1 it is partially damaged.
We suppose that the evolution of microscopic cracks and cavities responsible for the
damage is described by a nonlinear parabolic equation, whereas the model for the
stress in elastic body is given as σ = ζ (t,x)Ae(u). The optimal control problem we
consider in this paper is to minimize the appearance of micro-cracks and micro-
cavities as a result of the tensile or compressive stresses in the elastic body.

1 Introduction

The damage modeling in the context of industrial applications is in its infancy–
corrosion, multi-micro cracking etc. This makes this problem extremely complex.
The main idea of a novel approach to modeling material damage is to use the so-
called damage field ζ = ζ (t,x) as an internal variable which measures the fractional
decrease in the stress-strain response. The evolution of the damage field is derived
from the principle of virtual work under appropriate assumptions on the system’s
free energy, the dissipation pseudopotential, and the spatial interactions of the mi-
crocracks. In this approach the damage field ζ varies between one and zero at each
point in the body. When ζ = 1 the material is damage-free, when ζ = 0 the material
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is completely damaged, and for 0 < ζ < 1 it is partially damaged. The evolution
of the damage field is usually described by a parabolic inclusion or equation with a
damage source function ϕ which depends on the mechanical compression or tension
[7]. At the same time, the model for the stress is given as σ = ζ (t,x)Ae(u). Without
the damage parameter ζ , this is the classical model of elastic material. However, if
parameter ζ varies in the interval [0,1], the corresponding elasticity system

−div (ζ Ae(u)) = f

becomes degenerate.
In this paper we assume that the elastic body under consideration occupies the

domain Ω and is clamped on the part S of its boundary, and the rest part of the
boundary Γ = ∂Ω \ S is the influence zone of a Neumann control. Therefore, the
control variable is the density of a surface traction p acting on Γ . The optimal con-
trol problem we consider in this paper aims at two objectives. On the one hand
we try to minimize the discrepancy between a given displacement field ud and the
solution of the initial-boundary value problem by choosing an appropriate surface
traction p ∈Pad . On the other hand, we wish to minimize the appearance of micro-
cracks and micro-cavities as a result of the tensile or compressive stresses in the
elastic body. To the best knowledge of authors the existence of optimal solutions for
the above problem is an open question. Moreover, only few papers deal with opti-
mal control problems for degenerate partial differential equations (see for example
[1, 2, 3, 5, 6]).

2 Notation and Preliminaries

Let Ω be a bounded open connected subset of RN (N ≥ 2) with Lipschitz boundary.
We assume that Ω is occupied by some elastic body and its outer surface ∂Ω is
divided into two disjoint measurable parts ∂Ω = Γ ∪ S. Let the sets S and Γ have
positive (N −1)-dimensional measures and let S be closed.

For any subset E ⊂ RN we denote by |E| its N-dimensional Lebesgue measure
L N(E). Let χE be the characteristic function of a subset E ⊂ RN , i.e. χE(x) = 1 if
x ∈ E, and χE(x) = 0 if x ̸∈ E.

We will often use the Lebesgue spaces of vector-value functions. For exam-
ple, for the L2-space of vector-valued functions u(x) = (u1(x), . . . ,nN(x))t ∈ RN

we use the notation L2(Ω)N = L2(Ω ,RN). At the same time, L2(Ω)
N(N−1)

2 =

L2
(
Ω ;R

N(N−1)
2

)
is the space of square-summable functions whose values are sym-

metric matrices. We denote by SN := R
N(N−1)

2 the set of all symmetric matri-
ces ξ = [ξi j]

N
i, j=1, (ξi j = ξ ji). We suppose that SN is endowed with the euclidian

scalar product ξ ·η = tr(ξ η) = ξi jηi j and with the corresponding euclidian norm
∥ξ∥SN = (ξ ·ξ )1/2. Hereinafter, we adopt the convention regarding summation with
respect to repeating indices. In particular, ξ 2 = ξi jξi j.



Title Suppressed Due to Excessive Length 3

We denote by A(x) =
[
Akl(x)

]N
k,l=1 =

{
akl

i j(x)
}

an elasticity tensor at a material

point x ∈ Ω . The action of the elasticity tensor A(x) on the matrix ξ ∈ SN is defined
by A(x)ξ =

{
akl

i j(x)ξkl

}
. Then, A(x)ξ ·ξ = akl

i j(x)ξklξi j is the elastic energy density.
It is assumed that A(x) satisfies the usual symmetry conditions:

akl
i j(x) = alk

ji(x) = ak j
il (x), ∀ i, j,k, l = 1,2, . . . ,N. (1)

Let κ1 and κ2 be two fixed constants such that κ2 > κ1. We define A κ2
κ1 (Ω) as

the set of all symmetric elasticity tensors A(x) =
{

akl
i j(x)

}
such that the positive

definiteness condition holds:

κ1ξ 2 ≤ A (x)ξ ·ξ ≤ κ2ξ 2 a.e. in Ω ∀ξ ∈ SN . (2)

In order to describe a quasistatic evolution of damage in the elastic body Ω ,
we denote by u(x) = (u1(x), . . . ,uN(x)) the displacement field, σ(x) =

{
σi j(x)

}
the

stress tensor, and e(u)=
{

ei j(u)
}

the strain tensor. We assume that for every smooth
vector u(x) = (u1(x), . . . ,uN(x)) the formula for the strain tensor ei j(u) is provided
by the Cauchy law of small deformations

ei j(u) =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
, ∀ i, j = 1, . . . ,N. (3)

It is clear that e(u)∈ SN and e(u) is the symmetric part of the gradient of a displace-
ment u. Thus e(u) = 1

2 (∇u+(∇u)t) , where the gradient of a displacement u ∈ RN

is the (N ×N) matrix ∇u the entries of which are defined by (∇u)i j := ∂ui
∂x j

.

Hence, for any symmetric tensor A∈A κ2
κ1 (Ω), we have Ae(u)=A∇u. Therefore,

we will use indifferently both expressions. Note also that the divergence of a smooth
matrix σ(x) is the vector div(σ) ∈ RN the components of which are defined by
(div(σ))i := ∑N

j=1
∂σi j
∂x j

.
Let ΩT =(0,T )×Ω for some T > 0. Let ζ denote a damage field in ΩT and mea-

sures the fractional decrease in the strength of the material. Usually, for an isotropic
material, the damage field ζ = ζ (t,x) is defined as the ratio ζ = ζ (t,x) = Ee f f

E be-
tween the effective modulus of elasticity Ee f f and that of the damage-free material
E. It follows from this definition that the damage field should only have values be-
tween 0 and 1. Since every damage ζ : ΩT → [0,1] gives rise to a measure on the
measurable subsets of ΩT through integration, we will denote this measure by ζ .
Thus ζ (E) =

∫
E ζ dz for measurable sets E ⊂ ΩT . We will use the standard notation

L2(ΩT ,ζ dz) for the set of measurable functions f on ΩT such that

∥ f∥L2(ΩT ,ζ dz) =

(∫
ΩT

f 2 ζ dz
)1/2

=

(∫ T

0

∫
Ω

f 2 ζ dxdt
)1/2

<+∞.
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Let C∞
0 (RN ;S) =

{
φ ∈C∞

0 (RN) : φ = 0 on S
}

be the set of smooth damages in Ω .
We define the space H1(Ω ;S) as the closure of C∞

0 (RN ;S) with respect to the norm(∫
Ω

[
y2 + |∇y|2RN

]
dx
)1/2

.

Let Z = L2(0,T ;H1(Ω)), V = L2(0,T ;H1(Ω ;S)). Let Z ′ = L2(0,T ;H1(Ω)′)
and V ′ = L2(0,T ;H1(Ω ;S)′) be their dual. The following theorem plays an impor-
tant role in the study of an quasistatic evolution of damage in an elastic bodies (see
Simon [10]).

Theorem 1. Let us define the Banach space

W =

{
ζ : ζ ∈ Z ,

∂ζ
∂ t

∈ Z ′
}
,

equipped with the norm of the graph. Then, the following properties hold true:

1. the embedding W ↪→ L2(0,T ;L2(Ω)) is compact;
2. one has the embedding

W ↪→C([0,T ];L2(Ω)), (4)

where, C([0,T ];L2(Ω)) denotes the space of measurable functions on [0,T ]×Ω
such that ζ (t, ·) ∈ L2(Ω) for any t ∈ [0,T ] and such that the map t ∈ [0,T ] 7→
ζ (t, ·) ∈ L2(Ω) is continuous;

3. for any ζ ,ν ∈ W

d
dt

∫
Ω

ζ (t,x)ν(t,x)dx =
⟨
ζ ′(t, ·),ν(t, ·)

⟩
Z ′,Z +

⟨
ν ′(t, ·),ζ (t, ·)

⟩
Z ′,Z . (5)

Definition 1. We say that a damage ζ : ΩT → [0,1] is substantial in Ω , if

ζ−1 ̸∈ L∞(ΩT ) and ζ−1 ∈ L1(ΩT ). (6)

Note that in this case the functions in L2(ΩT ,ζ dxdt) are Lebesgue integrable on
ΩT .

Let W be the closure of the set of pairs
{
(u,e(u)) : u ∈C∞

0 (R
N ;S)N

}
in the

product of spaces L1(Ω)N ×L1(Ω)
N(N+1)

2 . Thus the elements of W are pairs (u,z),
where u is a vector and z = e(u) is the symmetric gradient of the vector u. In what
follows, we define the space W 1,1(Ω ;S) as the union of the first components u of
W . Following standard technique, it is easy to show that W 1,1(Ω ;S) is a Banach
space with respect to the norm ∥u∥W 1,1(Ω ;S) =

∫
Ω
[
|u|RN + ∥e(u)∥SN

]
dx. To each

damage field ζ (t,x) we may associate two weighted spaces

Wζ (Ω × (0,T );S) and Hζ (Ω × (0,T );S),

where Wζ (Ω × (0,T );S) is the set of vector-functions u ∈ L1(0,T ;W 1,1(Ω ;S)) for
which the norm
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∥u∥ζ =
(∫ T

0

∫
Ω

(
u2 + e2(u)ζ

)
dxdt

)1/2
(7)

is finite, and Hζ (Ω × (0,T );S) is the closure of the set{
ψ(t)φ(x) : ψ ∈C∞

0 (0,T ), φ ∈C∞
0 (RN ;S)N} (8)

in the Wζ (Ω × (0,T );S)-norm. Note that due to the estimates

∫ T

0

∫
Ω
|u|RN dxdt ≤

(∫ T

0

∫
Ω

u2 dxdt
)1/2√

T |Ω | ≤C∥u∥ζ , (9)

∫ T

0

∫
Ω
∥e(u)∥dxdt :=

∫ T

0

∫
Ω
(e(u) · e(u))1/2 dxdt

≤
(∫ T

0

∫
Ω

e2(u)ζ dxdt
)1/2(∫ T

0

∫
Ω

ζ−1 dxdt
)1/2

≤C∥u∥ζ , (10)

the space Wζ (Ω ×(0,T );S) is complete with respect to the norm ∥·∥ζ . Moreover, it
is clear that Hζ (Ω ×(0,T );S)⊆Wζ (Ω ×(0,T );S), and Wζ (Ω ×(0,T );S), Hζ (Ω ×
(0,T );S) are Hilbert spaces endowed with the scalar product

(u,v)ζ =
∫ T

0

∫
Ω
[u ·v+ e(u) · e(v)ζ ] dxdt. (11)

If the damage field ζ = ζ (t,x) is bounded between two positive constants, then it is
easy to verify that

Wζ (Ω × (0,T );S) = Hζ (Ω × (0,T );S). (12)

However, for a “substantial” damage ζ in the sense of Definition 1, the set of smooth
functions (8) is not dense in Wζ (Ω ×(0,T );S). Hence the identity (12) is not always
valid.

3 Radon measures and convergence in variable spaces

By a nonnegative Radon measure on ΩT we mean a nonnegative Borel measure
which is finite on every compact subset of ΩT . The space of all nonnegative Radon
measures on ΩT will be denoted by M+(ΩT ). According to the Riesz Representa-
tion Theorem, each Radon measure µ ∈ M+(ΩT ) can be interpreted as element of
the dual of the space C0(ΩT ) of all continuous functions vanishing at infinity. If µ
is a nonnegative Radon measure on ΩT , we will use Lr(ΩT ,dµ), 1 ≤ r ≤ ∞, to de-
note the usual Lebesgue space with respect to the measure µ with the corresponding

norm ∥ f∥Lr(ΩT ,dµ) =
(∫

ΩT
| f (x)|r dµ

)1/r
.
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Let {µk}k∈N, µ be Radon measures such that µk
∗
⇀ µ in M+(ΩT ), i.e.,

lim
k→∞

∫
ΩT

ψφ dµk =
∫

ΩT

ψφ dµ ∀ψ ∈C0(R), ∀φ ∈C0(RN), (13)

where C0(RN) is the space of all compactly supported continuous functions. A typ-
ical example of such measures is

dµk = ζk(t,x)dxdt, dµ = ζ (t,x)dxdt, where 0 ≤ ζk ⇀ ζ in L1(ΩT ). (14)

Let us recall the definition and main properties of convergence in the variable L2-
space.

1. A sequence
{

vk ∈ L2(ΩT ,dµk)
N
}

k∈N is called bounded if

limsup
k→∞

∫
ΩT

|vk|2RN dµk <+∞.

2. A bounded sequence
{

vk ∈ L2(ΩT ,dµk)
N
}

k∈N converges weakly to
v ∈ L2(ΩT ,dµ)N if limk→∞

∫
ΩT

vk ·φ dµk =
∫

ΩT
v ·φ dµ for any φ ∈C∞

0 (ΩT )
N ,

which is denoted as vk ⇀ v in L2(ΩT ,dµk)
N .

3. The strong convergence vk → v in L2(ΩT ,dµk)
N means that v ∈ L2(ΩT ,dµ)N

and

lim
k→∞

∫
ΩT

vk · zk dµk =
∫

ΩT

v · zdµ as zk ⇀ z in L2(ΩT ,dµk)
N . (15)

The following convergence properties in variable spaces hold:

(a) Compactness: if a sequence is bounded in L2(ΩT ,dµk)
N , then this sequence

is compact in the sense of the weak convergence in L2(Ω ,dµk)
N ;

(b) Lower semicontinuity: if vk ⇀ v in L2(ΩT ,dµk)
N , then

liminf
k→∞

∫
ΩT

|vk|2RN dµk ≥
∫

ΩT

|v|2RN dµ ; (16)

(c) Strong convergence: vk → v if and only if vk ⇀ v in L2(ΩT ,dµk)
N and

lim
k→∞

∫
ΩT

|vk|2RN dµk =
∫

ΩT

|v|2RN dµ. (17)

For our further analysis we make use the following concept.

Definition 2. We say that a bounded sequence{
(ζn,un) ∈ L2(ΩT )×Wζn(Ω × (0,T );S)

}
n∈N (18)

w-converges to (ζ ,u) ∈ L2(ΩT )×L1(0,T ;W 1,1(Ω ;S)) as n → ∞, if
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ζn ⇀ ζ in L2(ΩT ), (19)

un ⇀ u in L2(ΩT )
N , (20)

e(un)⇀ e(u) in the variable space L2(0,T ;L2(Ω ,ζn dx)
N(N+1)

2
)
, (21)

that is,

lim
n→∞

∫ T

0

∫
Ω

ζnη dxdt =
∫ T

0

∫
Ω

ζη dxdt ∀η ∈ L2(ΩT ), (22)

lim
n→∞

∫ T

0

∫
Ω

un ·λ dxdt =
∫ T

0

∫
Ω

u ·λ dxdt ∀λ ∈ L2(ΩT )
N , (23)

and

lim
n→∞

∫ T

0

∫
Ω

ζne(un) ·ξ (x)ϕ(t)dxdt =
∫ T

0

∫
Ω

ζ e(u) ·ξ (x)ϕ(t)dxdt

∀ψ ∈C∞
0 (0,T ), ∀ξ ∈C∞

0 (Ω ;SN). (24)

In order to verify the correctness of this definition, we give the following result.

Lemma 1. Let
{
(ζn,un) ∈ L2(ΩT )×Wζn(Ω × (0,T );S)

}
n∈N be a sequence such

that

(i) this sequence is bounded, i.e.

sup
n∈N

[∫ T

0

∫
Ω

(
ζ 2

n +u2
n + e2(un)ζn

)
dxdt

]
<+∞; (25)

(ii) there exists an element ζ ∈ L1(ΩT ) such that

ζn → ζ and ζ−1
n → ζ−1 in L1(ΩT ) as n → ∞, (26)

(iii) ζn : ΩT → [0,1] for all n ∈ N.

Then, this sequence is relatively compact with respect to w-convergence. Moreover,
each w-limit pair (ζ ,u) belongs to the corresponding space L2(ΩT )×Wζ (Ω ×
(0,T );S).

Proof. To begin with, we note that the condition (25) and estimates (9)–(10) imme-
diately imply the boundedness of the sequence in L2(ΩT )×L1(0,T ;W 1,1(Ω ;S)).
The uniform boundedness of {ζn}n∈N in L2(ΩT ) and property (26) ensure that the
limit damage field ζ belongs to L2(ΩT ) as well. Moreover, we have (see the property
(14)): dζn := ζn dxdt ∗

⇀ ζ dxdt =: dζ in M+(ΩT ).
Then, the compactness criterium of the weak convergence in variable spaces

(see property (a)) and condition (25) leads us to the existence of a pair (u,v) ∈
L2
(
0,T ;L2(Ω)N

)
×L2

(
0,T ;L2(Ω ,ζ dx)

N(N+1)
2

)
such that, within a subsequence of

{un}n∈N,
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un ⇀ u in L2(ΩT )
N , (27)

e(un)⇀ v in variable space L2(0,T ;L2(Ω ,ζn dx)
N(N+1)

2
)
. (28)

Our aim is to show that v = e(u) and u ∈ Wζ (Ω × (0,T );S). Indeed, for any φ ∈
C∞

0 (Ω) and ψ ∈C∞
0 (0,T ), we have∫ T

0

∫
Ω

ζ−1
n φψζn dxdt =

∫ T

0

∫
Ω

φψ dxdt =
∫ T

0

∫
Ω

ζ−1φψζ dxdt,

i.e. ζ−1
n ⇀ ζ−1 in L2(ΩT ,dζn). Moreover, the strong convergence in (26)2 implies

the relation

lim
n→∞

∫ T

0

∫
Ω

ζ−2
n ζn dxdt = lim

n→∞

∫ T

0

∫
Ω

ζ−1
n dxdt =

∫ T

0

∫
Ω

ζ−2ζ dxdt.

Hence, ζ−1
n → ζ−1 strongly in L2(ΩT ,dζn) (see property (c)), and therefore,

ψξ ζ−1
n → ψξ ζ−1 strongly in L2(0,T ;L2(Ω ,ζn dx)

N(N+1)
2

)
(29)

for each ψ ∈C∞
0 (0,T ) and ξ ∈C∞

0 (Ω ;SN). Further, we note that for every measur-
able subset K ⊂ ΩT , the estimate

∫
K
∥e(un)∥SN dz ≤

(∫
K

ζ−1
n dz

)1/2(∫
K
∥e(un)∥2

SN ζn dz
)1/2

≤C
(∫

K
ζ−1

n dz
)1/2

implies the equi-integrability of the family {∥e(un)∥SN}n∈N. Hence, the sequence
{∥e(un)∥SN}n∈N is weakly compact in L1(ΩT ), which means the weak compactness
of the matrix-valued sequence {e(un)}n∈N in L1(0,T ;L1(Ω ;SN)). As a result, by the
properties of the strong convergence in variable spaces, we obtain

∫ T

0

∫
Ω

e(un) ·ξ (x)ϕ(t)dxdt =
∫ T

0

∫
Ω

e(un) ·
(
ξ (x)ϕ(t)ζ−1

n
)

ζn dxdt

by (15), (28), and (29)−→
∫ T

0

∫
Ω

v ·
(
ξ (x)ϕ(t)ζ−1)ζ dxdt

=
∫ T

0

∫
Ω

v ·ξ (x)ϕ(t)dxdt ∀ψ ∈C∞
0 (0,T ), ∀ξ ∈C∞

0 (Ω ;SN).

Thus, in view of the weak compactness property of the sequence {e(un)}n∈N in
L1(0,T ;L1(Ω ;SN)), we conclude

e(un)⇀ v in L1(0,T ;L1(Ω ;SN)) as n → ∞. (30)

Since un ∈ L1(0,T ;W 1,1(Ω ;S)) for all n ∈ N and the space L1(0,T ;W 1,1(Ω ;S))
is complete, the conditions (27) and (30) imply e(u) = v, and consequently u ∈
L1(0,T ;W 1,1(Ω ;S)). To end the proof, it remains to observe that the conditions
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(27)–(28) guarantee the finiteness of the norm ∥u∥ζ (see (7)). Hence u ∈ Wζ (Ω ×
(0,T );S) and this concludes the proof.

As an obvious consequence of this lemma, we have the following result.

Corollary 1. The main statement of Lemma 1 remains true if we replace the condi-
tion (ii) by the following one: there exists an element ζ ∈ L1(ΩT ) such that

ζn → ζ in L1(ΩT ), and ζ−1
n → ζ−1 in L2(ΩT ,dζn).

4 The Model of Quasistatic Evolution of Damage in an Elastic
Material

In this section we describe the model for the control process in an elastic body,
present its variational formulation, and discuss the questions on existence and
uniqueness of weak solution.

We consider an elastic body which occupies the domain Ω . We assume that the
body is clamped on the surface S and so the displacement field vanishes there. We
suppose that the remaining part of the boundary Γ = ∂Ω \ S is the influence zone
of a Neumann control. So, the control variable is the density of surface traction p
acting on Γ . Let f be a given density of volume forces acting in ΩT = (0,T )×Ω
for some T > 0.

For a simplicity, we assume that an initial displacement (when t = 0) and an
initial stress tensor are equal to zero. Then, having assumed that the Hooke law
σ i j = ai jklekl , ∀ i, j = 1, . . . ,N holds true for the elastic body Ω , we adopt the fol-
lowing relation for the stress σ : ΩT → SN in the body with damage (see [4, 9] for
the details):

σ(t,x) = ζ (t,x)Ae(u(t,x)) a.e. in ΩT , (31)

where ζ = ζ (t,x) is a damage field in ΩT .
Following the motivation in Kuttler [7], the evolution of the microscopic cracks

and cavities responsible for the damage can be described by the equation

ζ ′−κ∆ζ = ϕ(x,e(u),ζ ).

Here the prime denotes the time derivative, ∆ is the Laplace operator, κ > 0 is a
damage diffusion constant, ϕ is the damage source function. Usually, it is assumed
that the damage source term ϕ : Ω × SN ×R satisfies some Lipschitz continuity
property and is such that whenever ζ > 1, ϕ(e(u),ζ ) ≤ 0. This assumption makes
sense because there should be no way that the source term for the damage produces
damage greater than 1.

Let ζad : Ω → [0,1] be a given L1(Ω)-function satisfying the properties

ζ−1
ad ∈ L1(Ω), ζ−1

ad ̸∈ L∞(Ω).

Let Ψ∗ be a nonempty compact subset of L1(Ω) such that the conditions
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ζad ≤ ζ ≤ 1 a.e. in Ω , (32)
ζ : Ω → [0,1] is smooth function on the surface Γ , (33)

ζ = 1 on Γ . (34)

hold true for every ζ ∈Ψ∗. So, each element ζ : Ω → [0,1] of Ψ∗ can be interpreted
as a substantial time-independent damage field in the sense of Definition 1.

The characteristic feature of this set is the following property.

Proposition 1. Let {ζ∗,n}n∈N and ζ∗ be such that ζ∗,n → ζ∗ in L1(ΩT ) as n → ∞,
and {ζ∗,n(t, ·)}n∈N ⊂Ψ∗ and ζ∗(t, ·) ∈Ψ∗ for all t ∈ [0,T ]. Then

ζ−1
∗,n → ζ−1

∗ in L1(ΩT ), and ζ−1
∗,n → ζ−1

∗ in L2(ΩT ,dζ∗,n). (35)

Proof. In view of the initial assumptions, we may assume that ζ−1
∗,n → ζ−1

∗ almost
everywhere in ΩT . Since ζ∗,n → ζ∗ in L1(ΩT ) and ζ−1

∗ ≤ ζ−1
ad ∈ L1(Ω), it follows

that the sequence
{

ζ−1
∗,n

}
n∈N is equi-integrable on ΩT . Hence the property (35)1 is a

direct consequence of Lebesgue’s Theorem. As for the property (35)2, it was proved
in Lemma 1. The proof is complete.

As a result, we adopt the following model for the controlled process in Ω : for a
given body force f ∈ L2

(
0,T ;L2(Ω)N

)
, a surface traction p ∈ Pad , the set Ψ∗, and

an initial damage field ζ0 ∈ L2(Ω) for which

∃ζ 0
∗ ∈Ψ∗ such that ζ 0

∗ ≤ ζ0 ≤ 1 a.e. in Ω , (36)

a displacement field u : ΩT → RN , a stress field σ : ΩT → SN , and a damage field
ζ : ΩT → R satisfy the relations

−divσ = f in ΩT , (37)
σ = ζ Ae(u) in ΩT , (38)

σ = 0 on (0,T )×S, (39)
σν = p on (0,T )×Γ , p ∈ Pad , (40)
ζ ′−κ∆ζ = ϕ(e(u),ζ ) in ΩT , (41)

ζ (0, ·) = ζ0 in Ω , (42)
ζ = 1 on (0,T )×Γ , ∂ζ/∂n = 0 on (0,T )×S, (43)
∃ζ∗ ∈Ψ∗ such that ζ∗ ≤ ζ (t,x)≤ 1 a.e. in ΩT . (44)

Here ν is the outward unit normal to Γ , ∂/∂n = ni∂/∂xi, ni denotes ith-component
of the unit outward normal vector to S, and Pad is the set of admissible controls to
the process (37)–(44). For simplicity, we suppose that Pad is defined as

Pad =

{
p ∈ L2(0,T ;L2(Γ )N) : ∥p∥

L2
(

0,T ;L2(Γ )N
) ≤Cp

}
. (45)
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To begin with, we note that, to the best knowledge of the authors, the existence of
a global weak solution to the initial-boundary value problem (37)–(44) in an open
question. There are several reasons for this. First, this problem is restricted by the
state constraints (44). It means that without the implication of the truncation op-
erators in the model, the initial conditions (42) with properties (36) and parabolic
equation (41) with boundary conditions (43), do not guarantee the fulfilment of the
inequality (44). Secondly, even if a damage field is admissible, i.e. ζ remains be-
tween some ζ∗ ∈Ψ∗ and 1, the properties (32)–(34), and (44) imply that the original
problem (37)–(40) is a mixed boundary value problem for the degenerate elasticity
system

−div (ζ Ae(u)) = f in ΩT ,

This means that for some damage field ζ (t,x) this problem can exhibit non-
uniqueness of weak solutions [11], the Lavrentieff phenomenon, and other surpris-
ing consequences.

In view of this, we adopt the following concept:

Definition 3. We say that a vector-valued function u = u(p, f,ζ ) is a weak solution
to the boundary value problem (37)–(40) for a fixed control p ∈ Pad , a given body
force f ∈ L2

(
0,T ;L2(Ω)N

)
, and a given damage field ζ : ΩT → [0,1] satisfying the

condition (44), if u ∈Wζ (Ω × (0,T );S) and the integral identity

∫ T

0

∫
Ω

[
ζ (t,x)A(x)e(u) · e(φ)

]
ψ dxdt

=
∫ T

0

∫
Ω

f ·φψ dxdt +
∫ T

0

∫
Γ

p ·φψ dH N−1dt (46)

holds for any φ ∈C∞
0 (RN ;S)N and ψ ∈C∞

0 (0,T ).

As was mentioned in Section 2, the set of smooth functions (8) is not dense in
the weighted space Wζ (Ω ×(0,T );S). Hence, we can not assert that a weak solution
to the degenerate elasticity problem (37)–(40) is unique. Further, we make use the
following result:

Proposition 2. Let Γ be a Lipschitz continuous part of the boundary ∂Ω . Let
ζ : ΩT → [0,1] be a damage field satisfying the estimate (44). Then there exists
a bounded linear operator

γΓ : Wζ (Ω × (0,T );S)→ L2(0,T ;H1/2(Γ )N) (47)

such that

(i) γΓ (u) = u|Γ if u ∈Wζ (Ω × (0,T );S)∩C
(
[0,T ];C(Ω)N

)
,

(ii) ∥γΓ (u)∥L2(0,T ;H1/2(Γ )N) ≤ C∥u∥Wζ (Ω×(0,T );S) for each vector-valued func-

tion u ∈Wζ (Ω × (0,T );S) with the constant C independent of Γ .

Corollary 2. Under the assumptions of Proposition 2, the space Wζ (Ω × (0,T );S)
does not contain rigid displacements. In other words, if û ̸= 0 is a vector-valued
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function for which there exists a sequence of smooth functions{
φ ∈C∞

0
(
0,T ;C∞

0 (RN)N
)}

n∈N such that

φn → û in L2(ΩT )
N , e(φn)→ 0 in L2(0,T ;L2(Ω ,ζ dx)

N(N+1)
2

)
,

then û ̸∈Wζ (Ω × (0,T );S).

We now give the variational formulation of the initial boundary value problem
(41)–(43).

Definition 4. Let p ∈ Pad , f ∈ L2
(
0,T ;L2(Ω)N

)
, and ζ0 ∈ L2(Ω) be given func-

tions. We say that a pair (ζ ,u) ∈ Z ×Wζ (Ω × (0,T );S) is a corresponding weak
variational solution to the initial-boundary value problem (37)–(44) with a nonlinear
source for the damage ϕ : L1(0,T ;W 1,1(Ω ;S))×Z → L2(ΩT ), if

∂ζ
∂ t

∈ Z ′, ζ −1 ∈ V , (48)

and there is an element ζ∗ ∈Ψ∗ such that the following relations hold true

∫ T

0

∫
Ω

[
ζ (t,x)A(x)e(u) · e(φ)

]
ψ dxdt =

∫ T

0

∫
Ω

f ·φψ dxdt

+
∫ T

0

∫
Γ

p ·φψ dH N−1dt ∀φ ∈C∞
0 (RN ;S)N , ∀ψ ∈C∞

0 (0,T ), (49)

⟨
ζ ′,φψ

⟩
Z ′,Z +κ

∫ T

0

∫
Ω

∇ζ ·∇φ ψ dxdt

=
∫ T

0

∫
Ω

ϕ(ζ ,e(u))φψ dxdt ∀φ ∈C∞
0 (RN ;Γ ), ∀ψ ∈C∞

0 (0,T ), (50)

ζ (0, ·) = ζ0(·) in Ω , (51)
ζ∗ ≤ ζ (t,x)≤ 1 for all t ∈ [0,T ] and a.e. x ∈ Ω . (52)

Remark 1. As follows from Theorem 1, the condition (52) is reasonable. It means
that the initial damage field ζ0 ∈ L2(Ω) must also be restricted by this inequality.

Remark 2. It is worth to notice that the original initial-boundary value problem (37)–
(44) is ill-possed, in general. This means that there are no reasons to suppose that
for every admissible initial data p ∈ Pad , f ∈ L2

(
0,T ;L2(Ω)N

)
, ζ0 ∈ L2(Ω), and

ζ∗ ∈ Ψ∗ this system admits at least one weak variational solution (ζ ,u) ∈ Z ×
Wζ (Ω × (0,T );S) in the sense of Definition (4). At the same time, by analogy with
[5, 6] it can be shown that this system may have an infinitely many weak solutions
(ζ ,u) for some fixed admissible control p ∈ Pad .



Title Suppressed Due to Excessive Length 13

5 Setting of the Optimal Control Problems and Existence
Theorem for Optimal Traction

The optimal control problem we consider in this paper is twofold. On the one
hand we try to minimize the discrepancy between a given displacement field
ud ∈ L2

(
0,T ;L2(Ω ;RN)

)
and the solution of the problem (37)–(44) by choosing an

appropriate surface traction p ∈ Pad . On the other hand, we wish to minimize the
appearance of micro-cracks and micro-cavities as a result of the tensile or compres-
sive stresses in the elastic body. More precisely, we are concerned with the following
optimal control problem

Minimize
{

I(p,u,ζ ) =
∫ T

0

∫
Ω
|u−ud |2RN dxdt

+
∫ T

0

∫
Ω
|ζ −1|dxdt +

∫ T

0

∫
Ω
∥e(u)∥2

SN ζ dxdt
}

(53)

subject to the constraints (37)–(45).

We introduce the set of admissible solutions to the original optimal control prob-
lem as follows:

Ξ :=
{
(p,ζ ,u)

∣∣ p ∈ Pad , ζ ∈ Z , u ∈Wζ (Ω × (0,T );S),

(ζ ,u) is a weak variational solution to (37)–(44)
in the sense of Definition 4} . (54)

We say that a triplet (p0,ζ 0,u0) ∈ L2
(
0,T ;L2(Γ )N

)
×Z ×Wζ 0(Ω × (0,T );S) is

optimal for problem (53), (37)–(45) if

(p0,ζ 0,u0) ∈ Ξ and I(p0,ζ 0,u0) = inf
(p,ζ ,u)∈Ξ

I(p,ζ ,u). (55)

Remark 3. Note that due to the estimates (9)–(10), we have the following obvious
inclusion for the set of admissible solutions

Ξ ⊂ L2(0,T ;L2(Γ )N)×L2(0,T ;H1(Ω))×L1(0,T ;W 1,1(Ω ;S)
)
.

However, the characteristic feature of this set is the fact that for different ad-
missible controls p ∈ Pad and, therefore, for different admissible damage fields
ζ : ΩT → [0,1] with properties prescribed above, the corresponding admissible
solutions (p,ζ ,u) of optimal control problem (53), (37)–(45) belong to different
weighted spaces. It is a non-typical situation from the point of view of the classical
optimal control theory.

Definition 5. We say that the mapping

ϕ : L1(0,T ;W 1,1(Ω ;S))×Z → L2(ΩT ) (56)
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possesses the property (M) on Ξ , if

(M1) for any open bounded domain Q ⊂ RN with a Lipschitz boundary such that
Ω ⊆ Q and S ⊂ ∂Q, this mapping can be extended to the following one

ϕ̃ : L1(0,T ;W 1,1(Q;S))×L2(0,T ;H1(Q))→ L2(0,T ;L2(Q))

which is weakly-∗ continuous with respect to the w-convergence, i.e. for any
sequence

{
(p, ζ̃n, ũn)

}
n∈N

⊂ Ξ ⊂ L2(0,T ;H1(Q))× L1(0,T ;W 1,1(Q;S))

such that

ũn ∈Wζ̃n
(Q× (0,T );S) ∀n ∈ N, (57)

(ζ̃n, ũn)
w→ (ζ̃ , ũ) as n → ∞ in the sense of Definition 2 (58)

(where instead of Ω we have to put Q), the equality

lim
n→∞

(
ϕ̃
(
e(ũn), ζ̃n

)
,φψ

)
L2(0,T ;L2(Q))

=
(
ϕ̃
(
e(ũ), ζ̃

)
,φψ

)
L2(0,T ;L2(Q))

holds ∀φ ∈C∞
0 (RN ;Γ ) and ∀ψ ∈C∞

0 (0,T );
(M2) the mapping (56) is locally bounded in the following sense: for any con-

stants C1,C2 > 0 there is a constant C3 =C3(C1,C2)> 0 such that∣∣∣(ϕ(e(u),ζ ),ζ −1)L2(ΩT )

∣∣∣≤C3 (59)

provided (u,ζ ) ∈Wζ (Ω × (0,T );S)×Z , ζ −1 ∈ V , and

(∥e(u)∥
L2
(

0,T ;L2(Ω ,ζ dx)
N(N+1)

2
) ≤C1, ∥ζ∥L2(ΩT )

≤C2. (60)

Remark 4. Note that for any admissible initial damage field ζ0 ∈ L2(Ω), the veri-
fication of the regularity property Ξ ̸= /0 for the original optimal control problem
(53), (37)–(45) is a non-trivial problem, in general. In the particular case, when the
damage field ζ (t,x) is assumed to be strictly separated from 0, the regularity prop-
erty follows from results of Kuttler & Shillor, where the solvability of a similar
initial-boundary value problem with a fixed surface traction p is studied).

Since our prime interest in this section deals with the solvability of optimal con-
trol problem (53), (37)–(45), we begin with the study of the topological properties
of the set of admissible solutions Ξ .

Definition 6. A sequence {(pn,ζn,un) ∈ Ξ}n∈N is called bounded if

sup
n∈N

[
∥pn∥L2(0,T ;L2(Γ )N) +∥ζn∥Z +∥un∥ζn

]
<+∞.
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Definition 7. We say that a bounded sequence {(pn,ζn,un) ∈ Ξ}n∈N of admissible
solutions τ-converges to a triplet (p,ζ ,u) ∈ L2

(
0,T ;L2(Γ )N

)
×L2(0,T ;H1(Ω))×

L1
(
0,T ;W 1,1(Ω ;S)

)
if

(S1) pn ⇀ p in L2
(
0,T ;L2(Γ )N

)
,

(S2) ζn ⇀ ζ in Z := L2(0,T ;H1(Ω)),
(S3) un ⇀ u in L2

(
0,T ;L2(Ω)N

)
,

(S4) e(un)⇀ e(u) in the variable space L2
(
0,T ;L2(Ω ,ζn dx)

N(N+1)
2

)
.

Due to the estimates like (9)–(10), the inclusion u ∈ L1
(
0,T ;W 1,1(Ω ;S)

)
is obvi-

ous.

Remark 5. As immediately follows from Definition 2 and Rellich-Kondrashov The-
orem (see also Theorem 1), if (pn,ζn,un)

τ−→ (p,ζ ,u) then (ζn,un)
w−→ (ζ ,u).

Lemma 2. Let {(pn,ζn,un) ∈ Ξ}n∈N be a bounded sequence. Then there exists a
triplet

(p,ζ ,u) ∈ L2(0,T ;L2(Γ )N)×L2(0,T ;H1(Ω))×L1(0,T ;W 1,1(Ω ;S)
)

such that, up to a subsequence, (pn,ζn,un)
τ−→ (p,ζ ,u) and u∈Wζ (Ω ×(0,T );S).

Proof. To begin with, we note that by the compactness criterium of the weak con-
vergence in Banach reflexive spaces, there exist a subsequence of {(pn,ζn)}n∈N,
still denoted by the same indices, and p ∈ L2

(
0,T ;L2(Γ )N

)
, ζ ∈ L2(0,T ;H1(Ω))

are such that the conditions (S1)–(S2) hold true. In order to check the rest conditions
(S3)–(S4) of Definition 7, we make use the following observation.

Since (pn,ζn,un) ∈ Ξ for all n ∈ N, it follows that there is a sequence {ζ∗,n}n∈N
in Ψ∗ such that (see Definition 4)

ζ∗,n(x)≤ ζn(t,x)≤ 1 for all t ∈ [0,T ] and a.e. x ∈ Ω . (61)

Moreover, by L1-compactness property of the set Ψ∗, there exists an element ζ̂∗ ∈Ψ∗
such that ζ∗,n → ζ̂∗ in L1(ΩT ) as n → ∞. Then Proposition 1 implies the strong
convergence

ζ−1
∗,n → ζ̂−1

∗ in L1(ΩT ). (62)

Hence, in view of (61), we have: ζn → ζ , ζ−1
n → ζ−1 in L1(ΩT ) as n → ∞, and

the inequality ζ̂∗ ≤ ζ ≤ 1 holds a.e. in ΩT . Thus, by Remark 5, all suppositions of
Lemma 1 are fulfilled. As a result, the fulfilment of the rest conditions (S3)–(S4)
and the inclusion u ∈ Wζ (Ω × (0,T );S) for w-limiting component of the sequence
{(ζn,un)}n∈N, are ensured by Lemma 1. The proof is complete.

Our next step deals with the study of topological properties of the set of admis-
sible solutions Ξ to the problem (53), (37)–(45).
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Theorem 2. Assume that Ξ ̸= /0 and the damage source term ϕ : SN ×R→ R pos-
sesses the property (M). Then for every force f∈ L2

(
0,T ;L2(Ω)N

)
and every initial

damage field ζ0 : Ω → [0,1] satisfying the condition (44), the set of admissible so-
lutions Ξ is sequentially closed with respect to the τ-convergence.

Proof. Let {(pn,ζn,un) ∈ Ξ}n∈N be a bounded τ-convergent sequence of admis-
sible solutions to the optimal control problem (53), (37)–(45). Let (p̂, ζ̂ , û) be its
τ-limit. Our aim is to prove that (p̂, ζ̂ , û) ∈ Ξ .

By the definition of the set of admissible controls Pad , we have p̂ ∈Pad , i.e. the
limit function p̂ is an admissible control. Closely following the proof arguments of
Lemma 2, it can be shown there exists a compact in L1(ΩT ) sequence of separating
functions {ζ∗,n}n∈N ⊂Ψ∗ with properties (61)–(62). By Theorem 1 we have

ζn → ζ̂ strongly in L2(0,T ;L2(Ω)) and ζ̂ ∈C([0,T ];L2(Ω)). (63)

Hence, ζn(t,x)→ ζ̂ (t,x) for all t ∈ [0,T ] and a.e. x ∈ Ω . Then passing to the limit
in (61) and in the relation ζn(0, ·) = ζ0(·), we deduce: ζ̂ (0, ·) = ζ0(·) in Ω , and the
inequality ζ̂∗(x) ≤ ζ̂ (t,x) ≤ 1 holds for all t ∈ [0,T ] and a.e. x ∈ Ω . Thus the limit
damage field ζ̂ = ζ̂ (t,x) satisfies the conditions (51)–(51).

In what follows, we note that in view of the boundedness of the sequence
{(pn,ζn,un) ∈ Ξ}n∈N there exist constants C1 > 0 and C2 > 0 such that the esti-
mates (60) hold true for each pair (ζn,un) with n ∈ N. Hence, the (M2)-property
implies

sup
n∈N

∣∣∣(ϕ(e(un),ζn),ζn −1)L2(ΩT )

∣∣∣≤C3.

Since the set
{

φ(x)ψ(t)
∣∣ ∀φ ∈C∞

0 (RN ;Γ ), ∀ψ ∈C∞
0 (0,T )

}
is dense in V ⊂ Z ,

by the completeness arguments and formula (5), we come to the energy identity

∥ζn(t)−1∥2
L2(Ω)+κ

∫ t

0
∥∇(ζn(s)−1)∥2

L2;RN)ds

= ∥ζ0 −1∥2
L2(Ω)+

∫ t

0

∫
Ω

ϕ(ζn,e(un))(ζn(s)−1)dxds ∀ t ∈ [0,T ]. (64)

As a result, following a standard technique (see, for instance, Lions [8]) it can be
shown that the sequence {ζn}n∈N is bounded in W =

{
ζ : ζ ∈ Z , ∂ζ

∂ t ∈ Z ′
}

.
Thus, without lost of generality, we may suppose that for the Z -weak limiting dam-
age field ζ the conditions (48) are valid, and

ζ ′
n ⇀ ζ̂ ′ in Z ′. (65)

It remains to show that the triple (p̂, ζ̂ , û) is related by the integral identities (49)–
(50) for all φ ∈C∞

0 (RN ;S)N , ψ ∈C∞
0 (0,T ), and φ ∈C∞

0 (RN ;Γ ). To do so, we note
that for every n∈N the integral identities (50)–(51) (with pn, ζn, and un instead of p,
ζ , and u, respectively), have to fulfil for the test functions φ ∈C∞

0 (RN ;S)N and φ ∈
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C∞
0 (RN ;Γ ). In this case e(φ)∈C∞

0
(
RN ;S

)N(N+1)
2 and ξ φ ∈C∞

0 (RN ;Γ )
N(N+1)

2 for any

ξ ∈ SN . However, these classes are essentially wider than the space C∞
0 (Ω)

N(N+1)
2 in

the definition of the weak convergence in variable space L2(Ω ,ζn dx)
N(N+1)

2 (see
(24)). Therefore, in order to pass to the limit in that integral identities as n → ∞, we
make use the following trick (see Buttazzo & Kogut [2]).

Let (ζ̃n, ũn) ∈ L2(0,T ;H1
loc(RN))×L1

(
0,T ;W 1,1

loc (R
N ;S)

)
be an extension of the

functions (ζn,un) to the whole of space RN such that the sequence {(ζ̃n, ũn)}n∈N
satisfies the properties:

ζ̃n ∈ L2(0,T ;H1(Q)), ζ̃ ′
n ∈ L2(0,T ;(H1(Q))′) (66)

ξ∗ ≤ ζ̃n ≤ 1 a.e. in QT := (0,T )×Q, (67)

sup
n∈N

[
∥ζ̃n∥L2(0,T ;H1(Q))+∥ũn∥L2(0,T ;L2(Q)N )

+∥e(ũn)∥
L2
(

0,T ;L2(Q,ζ̃n dx)
N(N+1)

2
)]<+∞ (68)

for any bounded domain Q in RN . Here ξ∗ ∈ L1(QT ) is a non negative function such
that ξ−1

∗ ∈ L1(QT ) and ξ∗|ΩT
∈Ψ∗.

Then by analogy with Lemma 2 (see also the property (63)) it can be proved that
for every bounded domain Q ⊂ RN there exist functions ζ̃ ∈ L2(0,T ;H1(Q)) and
ũ ∈Wζ̃ (Q× (0,T );S) such that

ζ̃n ⇀ ζ̃ in L2(0,T ;H1(Q)), ũn ⇀ ũ in L2(0,T ;L2(Q)N), (69)

ζn → ζ̂ strongly in L2(0,T ;L2
loc(RN)), (70)

e(ũn)⇀ e(ũ) ∈ L2(0,T ;L2(Q, ζ̃ dx)
N(N+1)

2
)

(71)

in the variable space L2
(
0,T ;L2(Q, ζ̃n dx)

N(N+1)
2

)
.

It is important to note that in this case we have

ũ = û and ζ̃ = ζ̂ a.e. in ΩT . (72)

Taking this fact and (M1)-property of the source term ϕ into account, we can rewrite
the integral identities (49)–(50) in the equivalent form

∫ T

0

∫
RN

[
ζ̃n(t,x)A(x)e(ũn) · e(φ)

]
ψχΩ (x)dxdt =

∫ T

0

∫
RN

f ·φψχΩ (x)dxdt

+
∫ T

0

∫
Γ

p ·φψ dH N−1dt ∀φ ∈C∞
0 (RN ;S)N , ∀ψ ∈C∞

0 (0,T ), (73)
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ζ ′

n,φψ
⟩
Z ′,Z +κ

∫ T

0

∫
RN

∇ζ̃n ·∇φ ψχΩ (x)dxdt

=
∫ T

0

∫
RN

ϕ̃(ζ̃n,e(ũn))φψχΩ dxdt ∀φ ∈C∞
0 (RN ;Γ ), ∀ψ ∈C∞

0 (0,T ). (74)

In what follows, we note that due to the property (70) and the continuity of the
embedding L2(QT ) ↪→ L1(QT ) for every bounded Q⊂RN , we have ζ̃n → ζ̃ strongly
in L1(0,T ;L1

loc(RN)). Hence

∫ T

0

∫
RN

χ2
Ω ζ̃n dxdt =

∫ T

0

∫
RN

χΩ ζ̃n dxdt

−→
∫ T

0

∫
RN

χΩ ζ̃ dxdt =
∫ T

0

∫
RN

χ2
Ω ζ̃ dxdt. (75)

As follows from convergence properties (15) and (17), the equality (75) implies the
strong convergence χΩ → χΩ in the variable space L2(0,T ;L2(RN , ζ̃n dx)). Taking
this fact, properties (65), (69), (71), (M1), and Remark 5 into account, we can pass
to the limit in (73)–(74) as n → ∞. As a result, we obtain

∫ T

0

∫
RN

[
ζ̃ (t,x)A(x)e(ũ) · e(φ)

]
ψχΩ (x)dxdt =

∫ T

0

∫
RN

f ·φψχΩ (x)dxdt

+
∫ T

0

∫
Γ

p ·φψ dH N−1dt ∀φ ∈C∞
0 (RN ;S)N , ∀ψ ∈C∞

0 (0,T ),

⟨
ζ̂ ′,φψ

⟩
Z ′,Z +κ

∫ T

0

∫
RN

∇ζ̃ ·∇φ ψχΩ (x)dxdt

=
∫ T

0

∫
RN

ϕ̃(ζ̃ ,e(ũ))φψχΩ dxdt ∀φ ∈C∞
0 (RN ;Γ ), ∀ψ ∈C∞

0 (0,T )

which, due to the equalities (72), are equivalent to

∫ T

0

∫
Ω

[
ζ̂ (t,x)A(x)e(û) · e(φ)

]
ψ dxdt =

∫ T

0

∫
Ω

f ·φψ dxdt

+
∫ T

0

∫
Γ

p ·φψ dH N−1dt ∀φ ∈C∞
0 (RN ;S)N , ∀ψ ∈C∞

0 (0,T ),

⟨
ζ̂ ′,φψ

⟩
Z ′,Z +κ

∫ T

0

∫
Ω

∇ζ̂ ·∇φ ψ dxdt

=
∫ T

0

∫
Ω

ϕ(ζ̂ ,e(û))φψ dxdt ∀φ ∈C∞
0 (RN ;Γ ), ∀ψ ∈C∞

0 (0,T ).
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Hence, the pair (ζ̂ , û) ∈ Z ×Wζ̂ (Ω × (0,T );S) is a weak solution to the initial-
boundary value problem (37)–(44) under p = p̂ in the sense of Definition 4. Thus,
the τ-limit triplet (p̂, ζ̂ , û) belongs to set Ξ , and this concludes the proof.

We are now in a position to state the existence of weak optimal solution to the
problem (53), (37)–(45).

Theorem 3. Let ud ∈ L2
(
0,T ;L2(Ω ;RN)

)
, f ∈ L2

(
0,T ;L2(Ω)N

)
, and ζ0 ∈ L2(Ω)

be given functions. Assume that Ξ ̸= /0, the damage source term ϕ : SN ×R → R
possesses the property (M), and the initial damage field ζ0 : Ω → [0,1] satisfies the
condition (44). Then the optimal control problem (53), (37)–(45) admits at least one
solution (p0,ζ 0,u0) ∈ L2(0,T ;H1(Ω))×W ×Wζ 0(Ω × (0,T );S).

Proof. Since the cost functional I = I(p,u,ζ ) is bounded below and Ξ ̸= /0, it pro-
vides the existence of a minimizing sequence {(pn,ζn,un) ∈ Ξ}n∈N to the problem
(53). From the inequality

inf
(p,ζ ,u)∈Ξ

I(p,ζ ,u) = lim
n→∞

[∫ T

0

∫
Ω
|un −ud |2RN dxdt

+
∫ T

0

∫
Ω
|ζn −1|dxdt +

∫ T

0

∫
Ω
∥e(un)∥2

SN ζ dxdt
]
<+∞, (76)

there is a constant C > 0 such that

sup
n∈N

∥e(un)∥
L2
(

0,T ;L2(Ω ,ζndx)
N(N+1)

2
) ≤C, (77)

sup
n∈N

∥un∥L2(0,T ;L2(Ω)N) ≤C, sup
n∈N

∥ζn∥L1(0,T ;L1(Ω)) ≤C. (78)

Since the sequence {ζn}n∈N is restricted by inequalities (61), the estimate (78)2
implies

sup
n∈N

∥ζn∥2
L2(0,T ;L2(Ω)) ≤ sup

n∈N
∥ζn∥L1(0,T ;L1(Ω)) ≤C. (79)

Then, by energy equality (64) and (M2)-property of the source term ϕ , we arrive at
the estimate

κ∥∇ζn∥2
L2(0,T ;L2(Ω)N) ≤ 2κ

∫ T

0
∥∇(ζn −1)∥2

L2;RN )dt +2κT |Ω |

= 2∥ζ0 −1∥2
L2(Ω)+2

∫ T

0

∫
Ω

ϕ(ζn,e(un))(ζn −1)dxdt +2κT |Ω |

(by (77), (79), and property (M2))

≤ 2∥ζ0 −1∥2
L2(Ω)+2C3 +2κT |Ω |<+∞.

Hence, supn∈N ∥ζn∥Z < +∞, and in view of the definition of the class of admis-
sible controls Rad , the minimizing sequence {(pn,ζn,un) ∈ Ξ}n∈N is bounded
in the sense of Definition 6. Hence, by Lemma 2 there exist functions p0 ∈



20 Peter I. Kogut and Günter Leugering

L2
(
0,T ;L2(Γ )N

)
, ζ 0 ∈ L2(0,T ;H1(Ω)), and u0 ∈Wζ 0(Ω × (0,T );S) such that, up

to a subsequence, (pn,ζn,un)
τ−→ (p0,ζ 0,u0). Moreover, by Theorem 1 we have

ζn → ζ 0 strongly in L2(0,T ;L2(Ω)). Hence

ζn → ζ̂ strongly in L1(0,T ;L1(Ω)). (80)

Since the set Ξ is sequentially closed with respect to the τ-convergence (see The-
orem 2), it follows that the τ-limit triplet (p0,ζ 0,u0) is an admissible solution to
the optimal control problem (53), (37)–(45) (i.e. (p0,ζ 0,u0) ∈ Ξ ). To conclude the
proof it is enough to observe that by properties (16) and (80), the cost functional I
is sequentially lower τ-semicontinuous. Thus

I(p0,ζ 0,u0)≤ liminf
n→∞

I(pn,ζn,un) = inf
(p,ζ ,u)∈Ξ

I(p,ζ ,u).

Hence (p0,ζ 0,u0) is an optimal solution, and we come to the required conclusion.
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