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We discuss the existence of weak solutions to the Cauchy problem for one class
of hyperbolic conservation laws that models a highly re-entrant production system.
The output of the factory is described as a function of the work in progress and the
position of the so-called push-pull point (PPP) where we separate the beginning of
the factory employing a push policy from the end of the factory, which uses a pull
policy. The main question we discuss in this paper is about the optimal choice of

the input in-flux, push and pull constituents, and the position of PPP.
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1. Introduction

The aim of this article is to analyze the existence of weak solutions for a
highly re-entrant production system which is described by a scalar nonlinear
conservation law. Typically, in high-technological semi-conductor manufacturing,
many machines are repeatedly used for similar processing operations. In such
production lines, semi-conductor wafers return to the same set of machines many
times. So, the product flow has a re-entrant character. Typically, the semi-con-
ductor systems are characterized by the very high volume (number of parts
manufactured per unit time) and the very large number of consecutive production
steps. This fact motivates to consider the scalar nonlinear conservation laws for
the simulation of such processes. Partial differential equations, which are related
with nonlinear conservation laws, are rather popular due to their superior analytic
properties and availability of efficient numerical tools for simulation. For more
detailed discussions of these models we refer to [1,2,4,8,12-23|.

From the optimization point of view, in manufacturing systems the natural
control input is the in-flux. However, the output of a factory can be changed
via dispatch policies. Specifically, re-entrant production creates the opportunity
to set priority rules for the various stages of production competing for capacity
at the same machines. This dispatch policy, as it was indicated in [3], typically
allows for two models of operations — the so-called push and pull policies. A puch
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policy, also known as first buffer first step, is typically assigned to the front of
the factory. A pull policy gives priority to later or fixed production steps over
the earlier production steps. The step where push policy switches to pull policy
is called the push-pull point (PPP). Moving the PPP leads not only to a change
in dispatch rules, but also it has significant effect on the total output. This fact
motivates to consider the PPP as a control variable.

A modern introduction to the study of hyperbolic conservation laws can be
found in [6]. Fundamental are questions of well-posedness, regularity properties
of solutions, existence, and their uniquenesss. Existence of solutions, regularity
and well-posedness of nonlinear conservation laws have been widely studied under
diverse sets of hypotheses, see e.g. [4,5,7]. Further results can be found in [9,11,23].

The characteristic feature of the re-entrant, we deal with in this article, is the
fact that we consider a Cauchy problem for nonlinear hyperbolic conservation law
for the part density p(t, z) including a PPP at position z*

ot x) + 0, (Vo(t,a) =0 in Q= (0,T) x (0,1),

where the multiplier

V= H(z— o)V </;p<t,y—x+x*>dy> T HE - o)W (/Orp@,y)dy)

depends explicitly on the specific PPP 2* € [0, 1] and via the functional dependence
V1 and V5 on the push and pull regimes

T 1
/ p(t,y)dy and / p(t,y —x + %) dy,
0 T

respectively. As for the right choice of functions Vi and Vs, this question is
definitely open. Typically, they use functions like (see [3,11,24])

1 Cq

V(W) = e V(W) =exp(—=W), or V(W)= Gy~ Togla — W)’

This fact motivates us to consider the functions V4 and V5 as arbitrary given. As
a result, we deal with the Cauchy problem for the nonlinear conservation law with
a nonlocal character of the velocity and with three different control actions — the
in-flux, the PPP, and the so-called clearing functions V; and V5.

The paper is organized as follows. In Section 2 we give the precise statement
of the Cauchy problem for a highly re-entrant production system. The aim of
Section 3 is to give some preliminaries and auxiliary results that we make use for
our further analysis. In Section 4 we prove the existence of a unique weak solution
to the Cauchy problem associated with the re-entrant system under given control
functions when the initial and boundary conditions we consider in L'(0,7) and
L'(0,1) sense, respectively.



ON EXISTENCE OF WEAK SOLUTIONS 3

2. Statement of the Problem

Let as > a3 > 0 and ag > 0 be given constants. Let 2,4 be the following
subset of C'1([0, 0))

oA, {V . Cl([(),oo)) ‘ 0<a; <V(z)<agVz€0,00), } (2.1)

IVl co(jo,00)) < @3-

Following the concept of the continuous flow model, describing the flow of
products through a factory like a fluid flow, we denote p(t, x) the product density
at the stage x € [0,1] and time ¢t € [0,T]. Here, x = 0 refers to the point of raw
material and z = 1 to the finished product.

Definition 2.1. We say that a mapping F' : [0, 7] x [0, 1] — [0, 00) is the clearing
function if there exists a point x* € [0, 1] and functions Vi, V5 € 2,4 such that

F(t,z) == p(t,z) [H(x* oW (Wpush(u x)) Y H(z— 2*)Va (Wp””(t, g;))} :
(2.2)

where H (z) stands for the Heaviside function and

1 x
W1, ) = / Pty —a+a")dy, WPt z) = / oty dy.  (23)
T 0

As follows from this definition F (¢, x) can be associated with the flux (production
rate) at the time ¢ € [0,7] and stage = € [0, 1] in the factory, whereas z* € [0, 1]
is the PPP where the push policy switches to pull policy.

Taking into account that in the manufacturing systems the natural control
input is the in-flux, we arrive at the following Cauchy problem:

p(t,z)+ 8, (Vp(t,z)) =0 in Q:=(0,T) x (0,1),

(
V=H(x -z </$1p(t,y—:€+x*)dy> + H(z" — )\ (/Oxp(t,y)dy>,
(
(
(
(

2.5)
p(0,2) = po(x) for x€0,1], p(t,0)V1(0) =u, for te[0,T], 2.6)
Vi,Vo € Aypq, x* €10,1], 2.7)
u € $yq = {w e L*0,7) | w20y < @, w(z) >0 ae on (0,7)}, (2.8)
where po € L?(0,1) is a given nonnegative function.
Hereinafter, a tuple
(u, V1, Va,2%) € L*(0,T) x C1([0,a1]) x C([0,a2]) x [0,1]  (2.9)

with properties (2.7)-(2.8) we call an admissible control.
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3. Preliminaries and Auxiliary Results

It is easy to see that, for each admissible control (u, Vi, Vs, z*), the Cauchy
problem (2.4)—(2.6) can be represented in the form of coupled system

Qupr(t, ) + D <v1 </0mp1(t,y) dy> pl(t,x)> ~0 i QL (3.1)
p(0,2) = polw) for € [0,a7), pi(tOVI(0) = ult), for te[0,T], (3.2)
Dupa(t, ) + Do <V2 </xlp2(t,y—:€+$*)dy> pg(t,:L‘)> —0 in Qv (33)
po(0,2) = polz) for @ € [2,1], (3.4)

p2(t, z*) Vs (/xl p2(t,y) dy) = pi(t, 2N (/oz

where Q1 := (0,7) x (0,2%), Q2 = (0,T) x (z*,1) the compatibility condition
(3.5) means that the output flux at = 2* of the push region must be considered
as the in-flux for the pull region.

p1(t,y) dy> , Vte 0,77, (3.5)

Remark 3.1. Tt is easy to note that the following representation for the solutions
to the Cauchy problem (2.4)-(2.6)

B (t,x), if t€]0,T], xz €[0,z%),
pt,7) —{ Z;(t,x), it te0,7], z e (1)), (3.6)

holds, where x = z* is the discontinuity point for the work in progress (wip)
profile.
Following [10], we adopt the following definition of a weak solution to the

problem (3.1)-(3.5).

Definition 3.1. Let T > 0, pg € L'(0,1), u € L*(0,T), z* € [0,1], and V3,V €
2,4 be given. We say that a pair (p1, p2) € C°([0,T]; L*(0,2*) x L(z*,1)) is a
weak solution to the Cauchy problem (3.1)—(3.5) if for every 7 € [0,T] and every
test functions (o1, p2) € CL([0,T] x [0,2*]) x C1([0,T] x [z*,1]) such that

p1(r,2) =0, Vzel0,z¥], ¢1(t,z*)=0, Vte]|0,r7], (3.7)
) .

902(7—71‘) = Oa Ve [1:*7 1]7 302( ) ) = 07 vVt e [O’T]a

the following integral identities hold true

/OT /Ox* p1(t, ) [8t801(t,x) +Wi </0”3 p1(t,y) dy> 8:0@1(75,3;)] dxdt

+/O u(t)e1(t,0) dt—i—/ox po(x)1(0,z) dz = 0, (3.8)
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/OT /: p2(t, x) [8t902(t,a:)+v2 </$1 pg(t,y—x""x*)dy) (%Ccpg(t,x)] dedt
+/0Tp1(t,m*)V1 </Ox

For our further analysis, we make use of a couple of auxiliary results.

1
p1(t,y) dy) @a(t, ™) dt +/ po(x)p2(0,z) dz = 0.
:B*

(3.9)

Lemma 3.1. Let pg € LY(0,1) and u,v € L'(0,T) be nonnegative functions.
Let z* € [0,1], = € [0,2%], z € [2%,1], and V1,Va € Ayq be given and such that
Vi(s) = Vi(0) for all s < 0. Then there ezists 6 € [0,T] independent of x and y
such that the Cauchy problem

t z—£(t)
dzit) =V /O u(o) da+/0 po(y) dy) , te€[0,4], §(0) =0,

. 1= C(t) a2
act) _ Va /0 v(o) d0+/ po(y) dy) , t€][0,6], ¢(0)=0,

dt x
(3.10)
has a unique solution (&;,(.) € [Cl([(),d])f.

Proof. We associate with the Cauchy problem (3.10) the mapping (£, () — F(&,() :
Q5 x Q5 — [C°([0,6])]* such that

t s z—E&(s)
/ Vi / u(o) da+/ po(y) dy) ds
0 0 0
t s 1-¢(s)+z*—=
[l [ orao poly) dy | ds
0 0 T*

F(&0(t) = , Vtel0,d]

(3.11)
and

—&(t
f(s)f() <, Vs, t€]0,0], s>t
S J—

(3.12)
where the constants o and g are defined as in (2.1). It is clear that Qs consists
of monotonically increasing functions on [0, d].

Let us show that there exists a constant x € (0, 1) such that

17 (&1, G1) = F (&2, ) llicogo.apz < & I = Gllooos) + 161 = llooo.a] (3:13)

for all &,(; € Qs and § > 0 small enough. Since F' maps into {25 provided
0 < a;l, it follows from (3.13) that F/(§,() : Q5 x Q5 — Qs X s is a contraction
mapping. Then, by the Banach fixed point theorem, there exists a unique pair
(&2, C.) such that F(&;, () = (£2,C2), ie. (§z,C2) is the unique solution to the
Cauchy problem (3.10). Moreover, as follows from definition of the set 2,; and

the fact that Vi, Vs € aq, the unique fixed pair (&, () for F is in [C([0, 8])]”.

Qs = {s € C°((0,8]) | £(0) = 0, ay <
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Let &,( (i = 1,2) be arbitrary elements of 5. Then (3.11) implies the

estimate
x—&2(s)
/ po(y) dy

t
|F(§1,C1)—F(§2,C2)|1§043/0 o

1—-(a(s)+x*—2

/1 po(y) dy

t
+ Qa3 /
0 —C1(s)+z*—=2

= a3 [J1(&1, &) + J2(C1, ()] - (3.14)

ds

ds

We define £, ¢ € C°([0,4]) by
£(t) == max{& (1), &)} and £(t) == min{& (¢), &(8)}-

Since §; are monotonically increasing functions, it follows that the inverse functions
¢ 1 and §*1 are well defined. Then, changing the order of integrations in (3.14)
as it is shown at Figure 1(left) and following in many aspects [11], we obtain

z—&2(s)
/ po(y) dy
x—£1(s)

:Lij$aw0—élu—w)@

t
h@fﬁzﬁ ds

<[ wwdy sp [0 -Ew)]. (3.15)

(t) 0<y<g(t) =

where for the term §_1(y) — gfl(y) we have the following estimate for each y €
[0,£(t)] (for details we refer to [11] and Figure 1(right))

0<ey) —EMy)

1
< OTIH& —&lleojo,6))-

(3.16)
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Fig. 1. Left: Change the order of integration in (3.15). Right: Explanation to formula (3.16)

Combining the above results, we finally get

T

1 r 1
J1(61,&) < alll&-@”cwm,ap/ _ poly)dy < al||€1—€2||00([o,5})/ po(y) dy.

(t) J Yo )
By analogy, it can be shown that
1 ! 1 1
Ja(C1,G2) < HCl—CzHCO([o,a])/ _ po(y)dy < H<1_<2||CO([0,6})/ po(y) dy.
a1 1-C(t) a1 1

—da

As a result, the inequality (3.14) implies

x 1
|F(§1,C1)(y)—F(fz,Cz)(Z/)h_ag[/ pl)dy+ [ po<y>dy]

a1 —dao 1—das

X [[1€1 = &lleooe + 1€1 — Glleoqoep] - (3:17)

Since po € L'(0,1), it follows that there exists § € (0,7) small enough such that

T 1
a
/ po(y) dy +/ po(y) dy < 271 (3.18)
T—0a 1—das a3
In view of estimate (3.17), this immediately leads us to inequality (3.13). O

Our next intention is to study the properties of the mappings x — &,(t) and

z = ((1).

Lemma 3.2. Assume that pg € L*°(0,1). Then, for given u,v € L'(0,T),
Vi, Vo € Ayq, and t € [0,6], the mappings

= &(t) 1 [0,27] = Ry and zw— ((t): [z7,1] = Ry (3.19)

are continuous.
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Proof. Let x,y € [0,2*] be arbitrary points. Then, in view of definition of the
class A,q, we can derive from the first equation of (3.10) the estimate

x—E&x(8)
/ po(o) do
y—&y(s)

t
SaﬂmhwmnA(W—m+MA®—@®mds

@@—MMS%A ds

t
< ol odle =31+ aslmlmoa | 160 = (5)lds.
As a result, by Gronwall-Bellman inequality, we see that

[62(t) — &(B)] < asllpoll L= (0,1)01 — ylexp (asllpollL=(0,1)t) < Clz —yl, (3.20)

that is,  +— & (¢) : [0,2*] — R4 is a continuous mapping. The continuity of
z +— (.(t) can be established in a similar manner. O

Let z € [0,2*] and z € [2*,1] be fixed. Let (&,¢:) € [CH([0, 5])]2 be the
corresponding solution of the system (3.10) on some small time interval [0, d]. For
given pg € L'(0,1), u,v € LY(0,T), and z* € [0,1], we introduce the following
couple of functions

Pre(ty) =9 & (& (&) —y))’ 0sys&lt) e [0,4], (3.21)
pO(y_ngc t))v fac(t) <y<ar,
v(GHGEW +aer—y) )
Pat)={ G GO ra—y) © VST vicp).
po(y — C=(¢)), e+ Gt <y <L
(3.22)

Lemma 3.3. For given py € L'(0,1), u,v € LY(0,T), * € [0,1], z € [0,2"],
z € [x*,1], and (&,(:) € [Cl([O,é])]Z, the functions p1, and pa ., defined by
(3.21)(3.22) are such that

Pro € C(0,0L LY (0,0%), oz € C(0,0: LN 1), (3.23)
Proof. We only prove the inclusion py € C([0,d]; L*(z*, 1)), since the second one
in (3.23) can be established by analogy. Let € > 0 be an arbitrary value. Our aim
it to show that there exists @ = 0(¢) > 0 such that, for arbitrary points s, t € [0, J],

we have

192,25, ) = p2.z(t, )11y <& provided [s —t| <6.
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Indeed, having assumed for simplicity that s > ¢, we have

1
/\mA&w—ﬁu@wN@
x*

< /x*+<z(t) v (G CG(s) +a* —y) v (G (GO a2t —y)) d

z*4C2(s) _ _
+/ p2,2(5,y) — P2, (t, y)| dy

C(GEH(G(s) +ar—y)) (¢ (C(t) +ar—y))

m*“"CZ(t)
1
+/’“)mw—@@%wM—@wﬂ@=h+b+h. (3.24)
x*+(x (s
Since
x +Cz(5) .
/ 1p2,2(5,y) — p2,2(t,y)| dy
G (t
T +Cz(s *+(4(8) _
S/ p2.2(8,y) dy+/ p2,-(t,y) dy
*+C= (1) *+Cx(t)
3

2) z* 4+ (s) U(Cz_l (Cz +z* _y)) o* (2 (s)
- dy + — ) d
/x*+<z(t> (G (Cls) +a—y) /zm o P GOy
(

¢ (C=(s)—C= (1)) T* (2 (s)— (o (t)
-/ voydo+ po(7) dy
0 x

*

and pp € L'(0,1) and v € L'(0,7), it is easy to conclude from monotonicity
property of ¢, € C1([0,4]) and condition (,(0) = 0 that there exists a value
f2(e) > 0 such that Jo < /3.

Now we show that the same conclusion can be obtained with respect to the
term Js. Indeed, let {plg}keN C CY([z*,1]) be an arbitrary sequence such that

Pk — po in L'(2*,1) as k — oo. Then

1
@::/ oy — () — poly — (1)) dy
T*+(; (5)

1
<[ ooty cato)) = bty = el

T*+(y (5)

1
<
55*+Cz(5)
1
<
T*+(z(s)

< /;CZ(S) (y)—p’é(y)‘ dy+/xHZ() ’p’é(y)—po(y)’ dy

*+CZ (5)_Cz (t)
1
C(k)|Ca(5) — C(8)] < 2/*

5y = C-(5)) = ity — (1) dy

Sy — C(0) = poly — ()] dy

poly) = P§(v)| dy + C(R)IC(5) = G (0,
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where the constant C'(k) depends on k& € N but does not depend on ¢ and s.
Hence, in view of the strong convergence pf — po in L'(z*,1) and monotonicity
of ¢, € C'([0,4]), there exists a value 3(¢) > 0 such that J3 < £/3.

It remains to estimate the first term in the right hand side of (3.24). Let
{vr}ren € CH([0,T]) be a strongly convergent sequence to v in L*(0,T). Then

U(CZ_I(CZ( )+x*_y)) (Cz (C:(t) + 2" —y)

I /x*-f—Cz(t) ) i
S CETCE +—y) LG GRra—g)|
THGO) |y (Cz_l (C2(s) +a* — y)) Vg (Cz (C(s) + 2" —y) )
</H;* Cé(Cz_l(Cz )+x _y)) Cz(gz_l(gz +z* _y) W
N /x*“z(t) ur (G (G(s) +2* —y) o (G () +a* —y)) a0
x* ¢l (C_l (Cz(s) + = y)) ¢l (Cz (Cz( ) +ar— y))
THEO o (GG F2t —y) v (GG F 2t )
" / (GO +ar—y) (G0 + a5 —y) W
=A;+ Ay + A3

Since A; = / [v(o) = v(o)do < [[v— vkl L1 0,1y,
¢z (C2(5)—Cx(1))

t
Ay = / 0(0) — 4(0)| do < [[v — vkl 1 (0.7, and
0

TGO g (CH(G() + 2 —y) o (G + 2t —y)
Ay =
? /z* ¢l (Qz (C2(s) + a* _y)) ¢L (Cz (C:(t) + o _y)) W
THGEO o (1 (G(9) + 27 —y) — ok (GG + 2 — )
S/m* (G (G(s) + a2 — ) "

dy

+/‘“< v (LGB +a =) o (GG + a7 — )
x* Cz (Czl(z + ¥ _y> Cz (C;1<Cz(t)+x*_y>)

< C(k)|C(s) — ¢:(1)]
~ $*+C2(t)
HC0) [ G0+ = ) — ¢ (G (G lo) 1" ) dy
it follows from definition of function (, (see the Cauchy problem (3.10)) that

~

x*+( (
+C(k')/ ‘VZ ezt @rar—n = Vel oprar |

z*+((t) 2(8)+x*—y)
CRIGa(s) — () + Ok ag/ /<<< ) v(o) dody

(t)+z*—y

z* 44 ( 1-C:(t)—z +y
043/ / v) dydy. (3.25)
1 (s)—z*+y
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To estimate the right hand side in (3.25), we change the order of integration. As
a result, we obtain (for the details, see Figure 2(left))

T*+C: (1) MG (s)+ar—y) GG (s)=C2 (1) pa+Ca(t)
/ / v(o) dody —/ / v(o) dydo
Gt t)+z*—y) (t)—Cz(0)+=*

Cz(s)— Cz(f’)"‘w C(s)—Cz(o)+x*
+/ / dyd0+/ / v(o) dydo
GG ()= ¢ (1) S G () —Ca(0)+a*

¢ (¢ (s)—C(2))
:/ Qz(a)v(a)da—F/I (G:(s) = C.(1)w(0) do
0 ¢z (Ca(8)—Cx(1))
+ / (C:(5) = C2(0))(0) dor (3.26)

Taking into account that

0< Glo) < G(s) — G(D), if 0<0 < (G(s)—G(1),
OSCZ(S)_CZ(U) SCZ(S)_CZ(t)7 if tﬁJSS,

we can conclude from (3.26) the following estimate

TG () G (G (9)+at —y) .
/ /C L) 4z —y) v(o)dody < |(.(s) — Cz(t)|/0 v(0) do
< HUHLl(QT)KZ(S) — (b)) (3.27)

It remains to estimate the last term in (3.25). Following in the similar manner (see
Figure 2(right) for the details), we change the order of integration. As a result,
we obtain

x +<z 1— Cz(t -z +y 1- Cz 'Y""Cz +x -1
/ / ) dydy = / / po(7) dydry
1 (s)—z*+y 1—-C2(s)

1-¢( )+<Z<t) G () ha* —1
+ / / po(7y) dydry
1-¢=(¢) Y+ () +ar—1

1 ¥ 4+(x(t)
+ / / po(7) dydy
1-C2(8)+Cx(t) Jy+Ca(t)+a*—1

1-C2(t) 1-C2(s)+¢: (1)
— / (7 + Co(5) — Dpoly) doy + / (C(8) — G ()po(7) dy
1—Cz(s) 1—¢=(t)

1
+/ (L =7)po(v) dr. (3.28)
1= ()4 (1)

Since

0<7y+C(s) =1 <C(s) —C(1), provided 1—(.(s) <v <1 —((1),
0<T-7<C(s) - Galt) brovided 1-C0) 3 0.0 251,
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Y

{2(0) 1

€10 1-3,() + ()

1-4,®
[#10)

1-4,(s)
$2() = 3,(0)

x' z+3,(t) z+3,(s) Y x 2+ 3,(0) y

Fig. 2. Change the order of integration in (3.26) (on the left) and in (3.28) (on the right)

we deduce from (3.28) that

*4+(x(t 1-C () —z*+y 1
/ / po(y) dydy < 1C(s) — o (1)] / po(v) dy
1 1—-¢2(s)

oty
< llpollzro,1)l€=(s) = C(B)]- (3.29)

Thus, combining the estimates (3.25), (3.27), and (3.29), we get

A3 < [C) + Bk)as (Il o) + ol )] 6:(5) - G0
- D(k)‘Cz(s) - Cz(t)HCz(S) - Cz(t>‘7
and, hence,
Ji < Ay + Ag+ Az < 2fv — vkl pro) + D(R)C:(s) — GOI[C:(s) — G:(2)], (3.30)

where the constant D(k) depends on k € N but does not depend on ¢ and s. As
follows from (3.30), for & € N large enough there exists a value 6;(¢) > 0 such
that J; < /3. As a result, we arrive at the following conclusion: for a given € > 0
and all ¢, s € [0, 0] such that |s — t| < § = min{6,(¢), b2(c),05(c)}, the estimate

192,2(8,°) = P22t )prary S + 2+ J3 < e
holds true. ]

As a consequence of Lemma 3.2, we have the following important property.

Corollary 3.1. If, in additional to the assumptions of Lemma 3.3, po € L*°(0,1),
then the mappings

z = P12t )ioe) 1 [0,27] = Ry and 2 ||p2,a ()l 1)t [27,1] = Ry
(3.31)

are continuous for each ¢ € [0, d].
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Proof. Tt is easy to check that the following relations

*

T t ¥ —Ea(t)

/0 p1z(t,y)dy :/0 u(o) do +/0 po(y) dy, (3.32)
1 t 1-¢2(2)

[ ctnay= [ verar+ [ pway (3.33)

*

hold true for each x € [0,2*], z € [z*,1]. As a result, for any x,y € [0,z*], we
have

1700t Mr 0,0y = WL Mz 000y

| prattorio— [ pyftodo
0 0

T —&y(t)
/ po(o) do
z* &g (t)

o0l oo 0,1)Cl — yl.

by (3.32)

Ies

< Dol [16(8) = &8

by (3.20

INw

The continuity of the mapping z — ||p2,2(¢, )| £1(2+,1) can be shown in a similar
way. ]

By Lemma 3.2, the following limits

. v by (3.21) .. [ el
fim | pry(t,y)dy = =" lim / d0+/o ’
. 1-¢(t)—z+2*
i [t =" | [erao [T ”y]

(3.34)

are well defined provided ¢ € [0,&;!(x) in (3.34); and ¢ € [0, 1 (1 — o + 2%)] in
(3.34)2. In view of this, we make use of the following notations

x Y
/ p1(t,y) dy := lim/ p1y(t,y)dy,
0 y=z Jo

1 1 (3.35)
/ p2(t,y + o — ) dy = ;igglﬁ/ p2,2(t,y + 2" — 2) dy.

Then relations (3.32)-(3.33) and Lemma 3.2 imply the following representation
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for the limit functions p; and ps

z ) t y*fy(t)
/ p1(t,v) dy = lim / u(o) do + / po(y) dy
0 Y=z | Jo 0

t z—Eq (t)
— [u@yds+ [ minan vt e [0,min{5, &1 (x)}] (3.36)
0 0

1
/ p2(t,y + 2" — ) dy
x

t 1-¢,(t)—z+z* t
[ oo | ) dy| = [ v(o)do
0 x* 0

1-Cx (t)—z+a*
+/‘ po(7) d, ¥t € [0,min{8, &M (1 — @ + ). (3.37)

*

= lim
Z—T

4. Existence of Weak Solutions to the Cauchy Problem
(2.4)—(2.6)

We begin this section with the following result.

Theorem 4.1. For given pg € L>(0,1), u € L'(0,T), Vi,Vo € Aaq, and z* €
[0,1], let p1 = pi(t,x) be defined by (3.36), and let pa = pa(t,x) be defined by

(3.37) with
v(t) = p1(t,z*)Vp </0

Then (p1,p2) € C([0,8]; L*(0,2%)) x C([0,6]; L*(z*,1)) and

*

p1(t,y) dy) : (4.1)

| pit,z), if t€][0,0], z €[0,z%),
Pt ) _{ (i), if 0] ze(an]) (4.2)

is a weak solution to the Cauchy problem (2.4)-(2.6) in the strip

Iy :={(t,x) : t€]0,9], z€[0,1]}. (4.3)
Proof. In view of Remark 3.1, a weak solution to the Cauchy problem (2.4)-(2.6)
in the strip (4.3) can be defined in the sense of Definition 3.1. Following this
definition, we fix an arbitrary 7 € [0, d] and a couple of test functions (p1, p2) €

c([o, 7] x [0,2*]) x C*(]0, 7] x [z*,1]) such that

901(7—7‘73) =0, Vre [va*]7 @1( x
pa(r,x) =0, Vaxelzh1], pt,1)=0, Vtelo,r7]
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Then, direct computations show that

A= / ' / " p1(t, ) [8tg01(t,:r) + 1 < / " it s) ds) axcp1(t,x)] dwdt

by (3.35) hm/ / 1yt x) [&gcpl(t z)+ Vi (/ pi(t, s) ds) am(pl(t,w)} dzdt

Yy—x

by Lemma 3.2 and Corollary 3.1 Ey(t (gy (é—y (t) - $))
%ﬂ/ﬁ/ & (& (g ) T

e [ [ ; %1“31?%%<Aﬂmaﬁw>@wuwMuﬁ

+ lim/ / o(x — &(1))Owp1(t, x) dxdt

Yy—x

y
+;1_Ig/ / o(z — &)W </0 p1(t,s) ds) Opp1(t, x) dxdt

=m// 0)0ue1 (1,6, (1) — & (o)) dodt

Yy—x

(0-6,(2)
+ lim / / ( / ot ) ds> Opipr (b, £,(t) — &,(0)) dodt

T pr*—&y(t)
+ lim / /0 po(0)drpr(t, 0 + & (1)) dodt

y=z Jo
T 1**5@/(0 UJny(t)
i [ oW [ st ds | duar(to 46, (0) dod
y=z Jo Jo 0

Using again Lemma 3.2 and Corollary 3.1, we can pass to the limit as y — z—0.
Therefore,

A= / / 0)0up1(t &alt) — E0(0)) dord

& (t)—Ex(0)
+/ /w®m</ m&$%>%w@&®—&wwwﬁ

/ / - 0)0p1(t, 0 + &(t)) dodt

x _gz U+§z(t)
+ /O /0 (o) ( /O Pt 5) ds) Dor(t, 0 + & (1)) dordt.

As a result, making use of relations (3.10) and (3.32), we arrive at the following



16 P. I. KOGUT, R. MANZO

relation
dsm (t,&(t) — Eu(0))
A= / / - dodt
/ /9” o d(pl(t o+ &) gy
dt

changing the ord:er of integration /T ’LL(U) (/T d@l (t, &x (t) - 590(0')) dt) do

0 dt

—Ea(r) T dpi(t, 0 4 £4(1)) )
. /0 20(0) < /0 & dt ) do

*

x & (@ =0) g (t t
+/ po(o) (/ 2l ’Ud: & (1)) dt | do
x* =& (T) 0

by (4.4)

T ¥ —&x(T)
= —/ u(o)e1(o,0) dJ—/ po(0)p1(0,0) do
0 0

*

- / po(0)¢1(0,0) do
z*—&o(T)

*

= —/Tu(t)gol(t, 0) dt—/x po(ﬂf)@l(O,ﬂf) dz,
0 0

which immediately yields the integral identity (3.8).
Following the similar scheme, it can be shown that

/ / pa(t,x [@apg( T)+ V2 </1p2(t,y+ x* — ) dy> axwg(t,x)} ddt
"t [ / palt, @ [Gtm(t 2)+ Vs < / e dy> am(t,x)] dudt

/ / d<p2 (t,Ce(t) = Cu(o) + 2 )dadt

dt

/ /1 Calt dch(t Ud:— () yod

([ ict0 b 1)
+ /Q;CZ(T) po(o) </o dealt G+ Ca(?) dt) do

1 G (1=0) dopy (¢ (1))
+/ po(o) (/ 902( Ud:“ dt) do
1—Ca(7) 0

, 1
= _/ v(t)wg(t,x*)dt—k/ po(x)e2(0, ) dz
0 z*

for all o € C([0,7] x [z*,1]) with properties (4.4), where the input-flux v(t) is
defined by (4.1). Since the inclusion (p1, p2) € C([0, 6]; L1(0,2*))xC([0, §]; L (z*, 1))




ON EXISTENCE OF WEAK SOLUTIONS 17

is a consequence of Lemma 3.3 and representations (3.36)—(3.37), the existence
result to the Cauchy problem (2.4)—(2.6) in the strip (4.3) is established. O

Theorem 4.2. Under assumptions of Theorem 4.1, a weak solution to the Cauchy
problem (2.4)-(2.6) in the strip (4.3) is unique.

Proof. In order to show that the distribution (4.2) defined in Theorem 4.1 is the
unique solution to this problem, we make use of some ideas from [11, Theorem
3.2]. Let us assume, by contraposition, that there exists another distribution

. | pi(t,z), if te]0,0], a:e[()x ),
’J“’x)‘{ Ba(t.o), i te[0.0] o e (1) (45)

such that p(t,z) # p(t, x). It is worth to emphasize that, in general, it is unknown
whether this function can be represented in the form like (3.36)—(3.37), because
in this case Lemma 3.1 immediately leads to the conclusion

T 1
A(m(tw)—mm» dv=07/ (pa(ty + 2% — ) — Palt,y + 2 —y)) dy = 0,
Yy

for all ¢t € [0, 7], almost all z € [0,z*] and y € [z*, 1], and, therefore, pi(t,y) =
p1(t,x) and pa(t,v) = pa(t, x) almost everywhere in the corresponding domains.

In view of this, we assume that p(t, x) is merely a weak solution to the Cauchy
problem (2.4)—(2.6) in the sense of Definition 3.1. For each 7 € [0, 4], € € (0,7),
and a test function (1, p2) € C1([0, 7] %[0, 2*]) x C1([0, 7] x [z*, 1]) with properties
(see for comparison (4.4))

e1(t,z*) =0 and @o(t,1) =0, Vtel0,7], (4.6)
we set p1(t,x) :=n:(t)p1(t, z) and @a (¢, x) == n.(t)p2(t, x), where
ne(t) =0 and 7n.(t)=1, Vtel[0,7—¢] and n.(t) <0, Vte[0,7]. (4.7)

It is clear that, in this case, the new test function (¢, ¢2,.) satisfies properties
4.4). Hence, by Definition 3.1, we have the equalities

/ / At 7) [&ggplg(t )+ ( /0 pl(t,y)dy> azgol,g(t,m)} ddt

+ /0 u(t)pr.o(1, 0) dt + /0 po(2)p1-(0, ) d = 0,

where
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In view of (4.7), these relations can be rewritten as follows

/Or /Oa:* p(t,x) [@@1(15,3@) +W (/Om 1 (t,y) dy) 31801(75,96)] daxdt
+ /OT u(t)pr(t,0) dt + /0‘”* po(7)p1(0, ) dz

-/ T = n)pta) [atmt,x) - ( / aity) dy) D (. x)] dud,

+/7_T€(1—77&)U(t)901(t,0) dt_/:eﬂé(t) </Om

p1(t, )1 (t, z) da:> dt,

(4.9)

/OT /xl e [6“’02@ S (/: paltsy +a” — ) dy) Dwpa(t, x)] dxdt
+ /OT 0(t)pa(t, z") dt + /xl po(x)p2(0, x) dx

= [ [a-wmien

1
X [8tg02(t,x) + V5 (/ pat,y +2* —x) dy) 8$<p2(t,af)] dxdt

+ /T;(l — 1)0(t)pa(t, x*) dt — /TT_E n.(t) (/501 pa(t, z)pa(t, x) dx) dt.
(4.10)

Since 7 € C([0,6); L}(0,a%)) x C([0,); L (z%,1)), (p1,2) € CL([0,7] x [0,27]) x
CL([0,7] x [2*,1]), and V1, V5 € Auq € C([0,00)), it follows that there exists a
constant D independent of € such that

/‘I"Tg /Ox*(l —ne)p1(t, @)

x [8t901(t,93) +W </ p(t,y) dy> 8xs01(t,x)] dxdt‘ < De,
0

/TTE /:Ei(l_”e)ﬁz(t, )

1
X [8t902(t,$)+‘/é < / pa(t, y+a*—x) dy) am(t,z)] dmdt‘ < De,

[ - mute0 ) < o

/:_5(1 — )0 ea(t,27) dt‘ < De.
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At the same time, the last terms in (4.9)—(4.10) possess the following properties

[ </0

T 1
/ (1) </ p2(t, x)pa(t, x diL‘) dt = — P2(T, z)ipa(T, z) du.
T—E€ x*

*

Pt @)t ) ) dt " () (r) da.

Thus, passing to the limit in —(4.10), we arrive at the extended integral
identities for the weak solution p p € C([O, ] Ll(O x*)) x C([0,6]; L' (x*,1)):

/OT /Ox* p1(t, x) [@@1(16,:10) +7 (/0”” p(t,y) dy) o1 (t, x)] dxdt

n /0 "t (t,0)dt + /O " po(@)er(0,2) da

/ (7, x)e1(T,x) de = 0, (4.11)
0
T 1 1
/ / pa(t, ) [8,5902(75,95) + Vs </ p(t,y +2* —x) dy> (%gog(t,x)] dxdt
0 z* T
T 1
+ [ a0eattatydt+ [ po@)pa(0.0)do
0 T*
1
—/ p2(T, 2)2(7, ) dw = 0. (4.12)
We are now in a position to specify the choice of test functions (¢1,¢2) €
C([0, 7] x [0, 2*]) x C1([0, 7] x [#*,1]) in (4.11)—(4.12) with properties (4.6). With

that in mind, for given py € L>(0,1), u € L'(0,T), V1,V; € Agq, 2* € [0,1], and
arbitrary y € [0,2*] and z € [2*,1], we define functions (&,(t),;(t)) by the rule

&) = /Ot Vi (/Oy 5i(5,0) da> ds,
C(t) = /Otv2 (/1 Pas, o + 2" — z)da> ds.

It is clear that these functions are monotonically increasing, (Ey, C) € [C([0,6])] 2
and the mappings

(4.13)

y— &) 0,2 >Ry and z— (1) : [25,1] = Ry (4.14)

are continuous. Moreover, direct computations show that

2ew= [ vi( [ utsord) s as,

t 1
—Cz(t) = —/ vy (/ pa(s,o0 +a* —z) do) pa(s,z*) ds
82’ 0 2
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and, therefore, the mappings

&) :[0,2*] >Ry and 2z~ 3@@) [z, 1] = Ry (4.15)

—
Y 0z

dy

are measurable and integrable. Thus, the mappings (4.14) are absolutely continuous.
Let (11,12) be compactly supported functions in C3([0, 2*]) x C([z*,1]). As
a result, we define the test functions (1, p2) for (4.11)—(4.12) as follows

o~

Sty x) = { Y1 (§y(7)—§y(t)+x>, (leSA e o1,
0, &(t) — &) +a* <z <uz¥,
(4.16)
oi(t,2) = { v (G0 -G +a), @ <e<1-CEHEM o
0, 1-GCN)+GH) <z<1,
(4.17)

It is clear now that (¢4, ¢3) € C1(]0,d] x [0,2*]) x C1(]0, 6] x [x*,1]) and for each
y € [0,2*] and z € [z*, 1] these functions satisfy the Cauchy problems

el (t,x) + W1 (/Oy pi(t, o) da> Oppl(t,z) =0, (t,x) € (0,9) x (0,z2%),

90211(7-7 l') = 1/11(213), HS [0717*]7
oY(t,z*) =0, t €[0,4],
(4.18)
and
1
oui(ta) 4 Va ([ Pttt 2)do) duifta) =0, ()€ 0.
’ x(z*, 1),
@g(ﬂm) :1/]2(37)7 T e [I*al]a
[ ¥3(t,1) =0, t €[0,4],
(4.19)
respectively.

As immediately follows from (4.16)-(4.17) and properties (4.14), the mapping

, '] = R and z— p3(t,x) : [2%,1] = R,
,2¥] = R and  z— Owp5(t, x) @ [2%,1] = R,

y—V ( pi(t,o) da) Oxpi(t,x) : [0,2*] > R and

1
z =V </ pa(t,o +a* —2) do> Opp3(t,z) : [2%,1] = R
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are continuous. Hence, the limit passage in (4.18)—(4.19) as y — x and z — x
yields

Ougt (1, 2) + Vi ( /0 “uto) da> Orgt(t,x) =0, (1) € (0,6) x (0.2),

oi(r, ) = P1(x), x € [0,z%],
e (t, ") =0, te0,0],

(4.20)
O (t, ) + Vi </1 pa(t,o +a* —x) da> 05 (t,x) =0, t €(0,9),

' x € (x*,1),

@5(T,2) = Yoz + 27— 27), x € [z*, 1+ — 7],
p3(1,2) =0, ze[l+a*—731],
@3(t,1) =0, tel0,d).

(4.21)

As a result, we deduce from (4.11)-(4.12) that

0 = lim / / o [atgol(t 2+ i ( /0 it y) dy> Dl (1, .@] dvdt

Yy—x

+ lim [ w(t)py(t,0)dt + hm/ po(2)p(0,z) dx

Yy—T 0

x*

_l}l_rg 0 Pi(r, 2) Y (. 2) da by (4.20),(4.16) ;I_m/o w(t) <£y( ) — gA (t)) dt
' x*—gy(T) N z* N
tim [ @ (&) + o) do= [ (e da

. &(r) u (E; Ny (r) — 0)) v -~
= ;g}c [/0 : (Egl@(r) - U)) Y1(o) do + /Ey(r) po(o = &y(7))1 (o) dU]

N /036 pi(r, x)Y(x) do = — /Ox pi(7, x)¢1(x) dw

&0 u (&1 (E(n) o)) - "
. /0 & (&'E@mn-0) pie)de /Ez(ﬂ pole = Samyin(o)do, (122

T 1
0= lim/ / pa(t, x)
Z—T 0 T*

1
. [atsosu,x) .y ( / Palt,y + 2 - 2) dy) axgo';(t,x)} dudt
(4.23)

and
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T

1
+ lim [ 0(t)5(t, z*)dt + ligl / po(z)p5(0, z) dx

z=z Jq
1
— lim ﬁ? (7—7 JZ)QO;(T, ZE) dx

Z—T x*
T 1
(R ;gr}p 300 (G = G +07) dt = [ pa(ra)ale) do

-1-hm/1 = x)1)o (Cz( )+33) dx
o+ (7) A(C <Cz + z* —:v>>

= lim oz
1 o~
trim [ pole— Clr))ea(e) do — / Ao, 2)a () d. (4.24)
o z*4+((7) ¥

Taking into account the continuity result (3.19) and the fact that functions
(¢1,92) € C§([0,7]) x CL([z,1]) and parameter 7 € [0,4] were arbitrary, after
localization, we can conclude from (4.22)-(4.24) the following relations

o ORI GREOR) : N
/0 pi(t,o)do := /0 i (E;l@(t) - x)) dx + /E»c(t) po(o — &(1)) do

t x—gr(t)
:/0 u(s) ds +/0 ,OQ(O’) do, (4'25)

/152(15, 0)do := lim . (CZ (CZ( ) 56)) dx
. 22T [ CQ (Cz_l (Cz( ) 4 2 —a:))
+ ;l_rgc a:i+2z(t) polo — C.(t)) do = /Ot v(s)ds + /;—Ca:(t) po(o)do  (4.26)

which evidently hold true in C([0, §]; L'(0, 2*)) and C([0, §]; L' (x*, 1)), respectively.
Moreover, as immediately follows from (4.26), we have

1 t 1-Co(t)—zta

| ot —ayar = [erdr+ [ () dy.  (427)
Then, combining relations (4.13), (4.27),
(Ey(t), C.(t)) satisfy the Cauchy problem (3
has a unique solution, it follows that fy t) = & (t) and Zz(t) = (, as elements of
C1(]0,4]). Hence, p = p by comparing (4.27) and (4.25) with (3.36) and (3.37).
Thus, a weak solution to the Cauchy problem (2.4)—(2.6) is unique for small
time. O

~

and (4.25), we see that the functions
.10). Since, by Lemma 3.1, this problem

/‘\/_\/\
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As a consequence of Theorem 4.1, we have the following hidden regularity
property of the weak solutions.

Corollary 4.1. Let p = (p1,p2) € C([0,7]; L*(0,2*)) x C([0,7]; L*(z*,1)) be a
weak solution to the Cauchy problem (2.4)-(2.6) for some T € (0,T]. Then for
given po € L>=(0,1), u € L*(0,T), V1,Va € Aaq, and x* € [0,1], we have

(p1,p2) € C([0,27]; L'(0,7)) x C([z*,1]; L*(0, 7)). (4.28)

Proof. Let x € (0,2*) be an arbitrary point. Then, by the first mean value theorem
for integration, we get

Aw)i= [ pa(t.a)d = Jim iA | ( / ) dy) dt = {by (3.35)}

A—0 2 _A

= ilglo ;lg}: ZA/ (/ p1,2(t,y) dy> dt. (4.29)

As follows from (3.21), we have the following representation

x+A
/ p1,=(t,y) dy
xT

- T+A
| m—ew)a 0<t<&Mo-a),
/52 O u (& (&0 )
_ a—n &L (fz ! (€(t) — y))
- r+A
+/§(t) poly — E(B)dy, €@ —A) <t< &N w+A),
Ay (1 (6(8) — y) B
d A
/I_A A E A AR
l“f‘A gz(t)
/ po(o) do, 0<t<&Hz—A),
z—A—E.(t)
&M (e () —a+A)
/ u(s)ds
_ ) Jo At ) (4.30)
+/ po(o)do, €M a —A) <t <&z +A),
(€ (1) —a—1)
/ u(s) ds, Ellx+A)<t<T
e (e (t)—a+A)

In view of (4.29), we can conclude from (4.30) that

&1 (@-0) petA—£(t)
/ / po(o) dodt
0 T—A—E€:(t)

&1 (@A) et (e () —z+A)
+ / / u(s) dsdt
& @-a) Jo

1
A = lim lim —
() = lim lim o2
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&l at+D) pr+A-Ea(t)
+ / / po(o) dodt
0

(z—A)
&t )—z—A)
/gz Lert) / ia) u(s)ds dt]
= A (z) + Ag(x) + Ag(x) + Ay(z). (4.31)

Changing the order of integration in each terms of (4.31), we arrive at the following
relations

1 [ 28 [ &l
Ai(z) = ilino ;1_131 oA /0 /ggl(x—A—a) dt | po(o) do
x—A &Y a+A—0)
+/ / dt | po(o)do
2A & a—A—0)

z

T+A & Y a+A—0)
+ / / dt | po(o)do
z—A 0

— lim i et @A)~z -A—o)
= lim lim [/0 oA po(o)do

A—0z—x
z—A ¢—1
gz (.T—I-A—O') fz (‘T— _U)
—|-/ po(o)do
3 = 0(0)
z+A -1 _
" / fz (x + A U) p()(O') d0':| by Lemmas:3.1 and 3.2
z—A 2A
z—A ¢—1
BT gz (.’B—i—A—O’) fz (l’— _0)
“am = i) do
T d& ! (y)
= —r 77 polo) do, 4.32
/0 ay  |y—po (@) 432

2A et s)+xz—A)
Ag(x) —ilgloglgé QA/ / Lot dt | u(s)ds

2A
= lim lim 2A/0 (&1 E(s) + 2 — A) =&z — A)) uls)ds =0,

A—0z—x
(4.33)
2A & a+A—0)
Asfa) = Jim tim o | / s ) (a0
_ . . - o —1 _ _
filinoigr‘lz A/ Ya+A—-0)—& (2= A)) po(o)do =0, (4.34)
1

Ez (24) &M (z+A)
As(z) = i{}no ;1_13913 5A o) dt | u(s)ds
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&M (E(m)—a—A) €21 (Ex(s)+a+A)
-1-/ / dt | u(s)ds
£'(20) €1 (& (s)+z—A)

1 & (Ea(r)—2—A) [ &' (Ex(s)ta+A)
= lim — / / dt | u(s)ds
A=02A | Jet 2n) GO
& (&) —a) ge—1
:/ () u(s) ds. (4.35)
0 dy y:{z(s)—i-x

Combining results (4.31)-(4.35), we finally get

- e Ww) .
| otemya= | pol0) d

Yy ly—so
& () —2) ge—1
N / & (v)
0

a7 u(s)ds, xe€l0,z"]. (4.36)

Y=z (s)+w

By analogy, it can be shown that
po(o) do

T r -1
[ tmya= [0
0 x* dy y=zr—2*—0

MG () —atar) ge—1
N / G (¥)
0

i v(s)ds, x€[z*1]. (4.37)

y=Ca(s)+a—a*

It is worth to note that ¢! € CL([0,&:(7)]) and (! € CL([0,(.(7)]) because
(&, C) € [Cl([O, 5])]2 are monotonically increasing functions. Hence, to conclude

the proof, it remains to apply the arguments of Lemma 3.3 to relations (4.36)—
(4.37). O

Remark 4.1. Taking into account the fact that

—1 I 1 —1 / _ 1
GO =gy @Y gy )
and by Lemma 3.1 and relations (3.36)-(3.37)
£ (&) =i ([ & ). (4.39)

G (G ) =V </: p2(C () y + 2 —w)dv> ,

it is easy to deduce from definition of the set 2,4 and representations (4.36)—(4.37)
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the following estimates

o1 (- 2) |1 (0,7) 22/0 pr(t,x)dt < oy [|lullpiom + lleollpr0,.)]

Vo e [0,27],

(4.40)

Hmh@hmwyZA/Mh@ﬁﬁafmﬂmuﬂ+Wﬂpwm]

Vo e [z%1].

(4.41)

We are now in a position to prove the main result of this section.

Theorem 4.3. Let py € L°°(0,1), u € L'(0,T), V1, Va € g, and x* € [0,1] be
given. Then the Cauchy problem (2.4)-(2.6) admits a unique global solution

LR P A e e
such that
(p1,p2) € C(0, T} L1(0,2")) x C((0, T} L' (&, 1)),
(p1,p2) € C([0,27]; L1(0,T)) x C([z*, 1]; L*(0,T)).
Proof. As follows from Theorem 4.1, there exists a value § € (0, 7] such that the
Cauchy problem (2.4)—(2.6) is uniquely solvable in the strip (¢,2) € [0, d] x (0,1).

Moreover, in view of representation (3.36)-(3.37), we have the following estimates
for the weak solution (p1,p2) € C([0,6]; L*(0,2*)) x C([0,]; L' (x*,1))

(4.43)

*

T t $*—fz*(t)
og/ p1(t, ) d’yz/ u(o) d<f+/ po(y) dy
0 0 0

< lullLr 0,7y + llpoll Loe (0,1 (4.44)
1 ¢ 1=C,e ()
OS/ pz(t,v)dvz/ v(U)d0+/ po(7y) dy
x* 0 x*
< |vllzr(o,6) + llpoll 2o (0,1 (4.45)

for all ¢ € [0, d]. In order to estimate the term

0 x
WMmWZ/mmﬁm</
0 0

we apply the inequality (4.40). Then

*

pi(t,y) dy) dt, (4.46)

5
. )
vl 2105y < 042/0 p1(t,z*)dt < o [lullLror) + llpollLr o] -
Since [|pollz1(0.0+) < llPollL=(0,1), we finally get
lo1lleqoe;nt 0,2 < lullzrory + llpollLes(0,1)5 (4.47)

20&2
lp2lle(o,0:0 (@5 1) < o [l Lo,y + ool Lo 0,1)] - (4.48)
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Since both the a priori estimates for weak solution (p1, p2) and the choice rule
(3.18) do not depend on 9, it follows that the weak solution

(p1,p2) € C([0,48); L'(0,2%)) x C([0,6]; L (27, 1))

can be extended to the next time interval [0,2d] N [0,T]. Hence, following this
iterative procedure, we finally find a unique global solution

(p1,p2) € C(10,T]; L'(0,2")) x C([0,T); L' (2", 1)).

It remains to note that inclusion (4.43)s is a direct consequence of Corollary 4.1.
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