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Abstract. We study one class of nonlinear fluid dynamic models
with controls in the initial condition and the source term. The model
is described by a nonlinear inhomogeneous hyperbolic conservation
law with state and control constraints. We consider the case when
the greatest lower bound of the cost functional can be unattainable
on the set Ξ of admissible pairs or the set Ξ is possibly empty. Using
the methods of vector-valued optimization theory, we show that this
optimal control problem admits the existence of the so-called weak-
ened approximate solution which can be interpreted as generalized
solution to some vector optimization problem of special form.

1. Introduction

In recent years, the interest of the scientific community for supply chains
modeling (see [5, 11–13]) and control has become greater and greater, in
order to optimize the production processes. Several questions can be faced in
the design of optimal supply chain: the control of the maximum processing
rates, or the processing velocities, or the input flow in such way to minimize
the value the queues attain and to achieve an expected outflow, or in the
case of a supply network the optimal routing of parts such that inventory
costs are minimized. The aim of this article is to analyze an optimal control
problem described by a nonlinear conservation law with state and control
constraints. It is well known that the conservation laws, taking the form of
hyperbolic partial differential equations, appear in a variety of applications
that offer control or identification of parameters, including the control of
traffic and water flows, the modeling of supply chains, gas pipelines, blood
flows, etc. The analysis of conservation laws is a very active research area.
The main difficulty in dealing with them is the fact that the solution of such
systems may develop discontinuities (after a finite time), that propagate in
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time even for smooth initial and boundary conditions (see [4, 20, 21]). To
the best knowledge of authors, the existence of optimal controls and their
approximation to the problems of conservation laws with state constraints
is an open problem even for the simplest situation.

In [8] considering the case when the objective space is the Banach space
Lp

loc(R
N ) partially ordered by the natural ordering cone of positive ele-

ments, sufficient conditions for the existence of efficient controls have been
derived. When the original control problem is not regular and may fail to
have the entropy solutions, the regularization approach and the existence
of the so-called efficient regularizators to the original vector valued opti-
mization problem have been discussed. Influx-rates in the equation taking
the form of impulse functions has been treated in [10]. Using the vanish-
ing viscosity method and the so-called principle of fictitious controls, it has
been shown that entropy solutions to the original Cauchy problem can be
approximated by optimal solutions of special optimization problems.

In this paper we carry out our analysis for the following class of optimal
control problems (OCPs) with state and control constraints

Minimize J(u, y) subject to u ∈ Uad, y ∈ Yad, (1)

where y = y(u) is the entropy solution of the nonlinear inhomogeneous
conservation law

yt +
n∑

i=1

(fi(y))xi
= g(t, x, y, u1), (t, x) ∈ (0, T )× Rn def= ΩT , (2)

y(0, x) = u0(x), x ∈ Rn. (3)

Here, J is an objective functional, u = (u0, u1) is the control in the initial
condition and the source term, Uad is the set of admissible controls, and Yad

is the set of admissible states. Hereinafter we specify these sets as follows

Uad =
{

u = (u0, u1) ∈ L∞(Rn)× L∞(ΩT )m :

max
{‖u0‖BV (O), ‖u1‖BV ((0,T )×O)m

} ≤ γ ∀O ⊂ Rn
}

; (4)

Yad =
{

y ∈ C([0, T ];L1
loc(Rn)) : l(y(t, x)) ≤ 0 a.e. in DT

}
, (5)

where l : R → R is a continuous operator. In mostly applications this
operator takes the form l(y) = y − α, with some positive constant α.

Remark 1. We note that the assumption of boundedness of the total
variation in (4) is rather strict. It means that the original optimal control
problem (1)–(5) admits at least one solution provided admissible controls
are measurable functions only. Since our main aim in this paper is to study
the asymptotic behaviour of approximative solutions to (1)–(5), which we
take in a special form (see (4.7)), and to show that any cluster point of such
solutions can be considered as a minimizer for the lower semicontinuous
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regularization of the original problem, we use the property that any sequence
of admissible controls is compact with respect to the strong convergence in
L1 norm. This is the reason we assume that, for simplicity, the admissible
controls are described by conditions (4). In fact the boundedness of the total
variation gives the strong compactness in L1, which is the crucial hypothesis.
In spite of the fact that the introduced assumption (4) is rather restrictive,
the problem (1)–(4) admits interesting applications such as optimization of
traffic flows on networks, of supply chains, etc. (see, for instance, [5, 9, 12–
14]).

We also assume that the flux-function

f = (f1, f2, . . . , fn) : R→ Rn is locally Lipschitz. (6)

Furthermore, g ∈ L∞(ΩT ; C0,1
loc (R × Rn)) and for all Mu > 0 there are

constants C1, C2 > 0 such that

g(t, x, y, u1) sgn (y) ≤ C1 + C2|y| ∀ (t, x, y, u1) ∈ ΩT × R× [−Mu,Mu]m ,
(7)

where sgn is the sign function.
Our prime interest is to discuss the so-called vector-valued approximation

approach to the construction of weakened approximate solutions for the
above problem.

We admit that the original OCP (1)–(3) may fail to have an exact solution
(uopt, yopt) — namely, the greatest lower bound of the cost functional can
be unattainable on the set Ξ of admissible pairs or the set Ξ is possibly
empty. To construct solutions close to the set of admissible solutions and
guaranteeing the proximity of the cost functional to its greatest lower bound,
we apply the so-called vector-valued approximation of the original OCP. To
do so, we consider a special vector optimization problem and show that this
problem possesses some characteristic properties. In particular, it enables
us to study the regularity of the original OCP, leading to the construction
of the so-called weakened approximate solutions.

2. Notation and Preliminaries

Let n ≥ 1 and m ≥ 1 be two fixed positive integers. Let D be a bounded
open domain in Rn. For a given T > 0, we set ΩT = (0, T ) × Rn and
DT = (0, T )×D. Let Lp

loc(ΩT ), with 1 ≤ p ≤ ∞, be the locally convex space
of all measurable functions q : ΩT → R such that q|(0,T )×K ∈ Lp((0, T )×K)
for all compact sets K ⊂ Rn.

Let O be a bounded open subset of Rn and let v : O → R be an element
of L1(O). Define
∫

O
|Dv| = sup

{ ∫

O
v div ~ϕ dx : ~ϕ ∈ C1

0 (O)n, ‖ϕ(x)‖C(O)n ≤ 1 for x ∈ O
}

.
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According to the Radon-Nikodym theorem, if
∫
O |Dv| < +∞ then the dis-

tribution Dv is a measure and there exist a function v′ ∈ L1(O)n and a
measure Dsv, singular with respect to the n-dimensional Lebesgue measure
LnbO restricted to O, such that

Dv = v′LnbO + Dsv.

Definition 2. A function v ∈ L1(O) is said to have a bounded variation
in O if the derivative Dv exists in the sense of distributions and belongs to
the class of Radon measures with bounded total variation, i.e.

∫
O |Dv| <

+∞. By BV (O) we denote the space of all functions in L1(O) with bounded
variation.

Under the norm

‖v‖BV (O) = ‖v‖L1(O) +
∫

O
|Dv|,

BV (O) is a Banach space. It is well-known the following compactness result
for BV -functions.

Proposition 3. The uniformly bounded sets in BV -norm are relatively
compact in L1(O), that is, if {vk}∞k=1 ⊂ BV (O) and supk∈N ‖vk‖BV (O) <

+∞, then there exists a subsequence of {vk}∞k=1 strongly converging in
L1(O) to some v ∈ BV (O).

Definition 4. A sequence {vk}∞k=1 ⊂ BV (O) weakly converges to some
v ∈ BV (O), and we write vk ⇀ v iff the two following conditions hold:
vk → v strongly in L1(O), and Dvk ⇀ Dv weakly* in M(O), where M(Rn)
stands for the set of all Radon measures on Rn.

In the proposition below we give a compactness result related to this
convergence, together with the lower semicontinuity property (see [15]).

Proposition 5. Let {vk}∞k=1 be a sequence in BV (O) strongly converg-

ing to some v in L1(O) and satisfying sup
k∈N

∫

O
|Dvk| < +∞. Then

(i) v ∈ BV (O) and
∫

O
|Dv| ≤ lim inf

k→∞

∫

O
|Dvk|;

(ii) vk ⇀ v in BV (O).

Throughout the paper we will often use the concepts of the weak and
strong convergence in L1(DT ). Let {gk}k∈N be a bounded sequence in
L1(DT ). We recall that {gk}k∈N is called equi-integrable on DT , if for any
δ > 0 there is τ = τ(δ) such that

∫
S
|gk| dz < δ for every measurable subset

S ⊂ DT = (0, T ) × D of Lebesgue measure |S| < τ . Then the following
assertions are equivalent for L1(DT )-bounded sequences:

(i) a sequence {gk}k∈N is weakly compact in L1(DT );
(ii) the sequence {gk}k∈N is equi-integrable.
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3. Statement of the Problem and Main Motivation

We focus on the fluid dynamic model, expressed by the Cauchy problem
for nonlinear inhomogeneous conservation law (2)–(3). To begin with, we
define the sets Uad and Yad of admissible controls and states as in (4)–(5).
As it was mentioned in Introduction, the characteristic feature of the initial
value problem (2)–(3) is that even for arbitrary smooth functions u0, u1,
and g, the solution of (2)–(3) may develop discontinuous after a finite time
(see [20, 21]), which makes it necessary to consider weak solutions. At the
same time, weak solutions of (2)–(3) are, in general, not unique and, in order
to select the “physically” relevant solution, some additional conditions must
be imposed. Following [14, 20, 21], we introduce the entropy-admissibility
condition, coming from physical considerations, as follows.

Definition 6. For a given u = (u0, u1) ∈ Uad, a function y ∈ L∞(ΩT ) is
called an entropy solution of (2)–(3) if for all c ∈ R and

η(λ) := |λ− c|, qi(λ) := sgn (λ− c) (fi(λ)− fi(c)) , ∀ i = 1, . . . , n (8)

the entropy inequality

(η(y))t +
n∑

i=1

(qi(y))xi
≤ sgn (y − c)g(t, x, y, u1) in D′(ΩT ) (9)

holds and if the initial data u0 are assumed on the sense

lim
t→0+

1
t

∫ t

0

‖y(τ, ·)− u0‖L1(K) dτ = 0 for all compact K ⊂ Rn. (10)

The existence and uniqueness of entropy solutions for (2)–(3) under as-
sumptions given above was shown by Volpert [24] and Kruzhkov [20] (see
also [6,25]). The following result collects important properties of the control-
to-state mapping u → y(u)

Theorem 7 ( [25]). Let u = (u0, u1) ∈ Uad be given controls and let
the conditions (6)–(7) hold. Then for every u ∈ Uad there is at most one
entropy solution

y = y(u) ∈ C([0, T ];L1
loc(Rn))× L∞(ΩT )

satisfying (9)–(10). Moreover, the mapping

Uad 3 u → y(u) ∈ C([0, T ];L1(D)) (11)

is Lipschitz continuous and if g has a compact support suppx(g) ⊂⊂ Rn

w.r.t x then y ∈ L∞(0, T ; BV (D)).

Definition 8. We say that a pair

(u, y) ∈ [
L1

loc(Rn)× L1
loc(ΩT )

]

× [
C([0, T ];L1

loc(Rn))× L∞(ΩT )× L∞(0, T ; BV (D))
]
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is an admissible solution to the OCP (1)–(3) if u = (u0, u1) ∈ Uad, y ∈ Yad,
J(u, y) < +∞, and y = y(u) is the corresponding entropy solution to (2)–(3)
in the sense of Definition 6.

Let Ξ be the set of all admissible pairs to the problem (1)–(3). We say
that a pair (u0, y0) is optimal for the problem (1)–(3) if

(u0, y0) ∈ Ξ and J(u0, y0) = inf
(u,y)∈Ξ

J(u, y).

The following assumption is crucial in this section:

(A1): The OCP (1)–(3) is regular in the following sense: there exists at
least one pair (u, y) such that (u, y) ∈ Ξ.

For our further analysis we set

U = L1(D)× L1(DT ), Y = C([0, T ];L1(D)),

Uloc = L1
loc(Rn)× L1

loc(ΩT ), Yloc = C([0, T ];L1
loc(Rn)).

Then the sufficient conditions for the existence of an optimal solution to
the problem (1)–(3) can be stated as follows.

Theorem 9. Assume the initial assumptions (6)–(7) hold true and the
cost functional J : U × Y → R is sequentially lower semicontinuous with
respect to the norm topology of U × Y. Then the OCP (1)–(3) admits an
optimal solution (u0, y0) ∈ Ξ if and only if this problem is regular.

Proof. To begin with, we show that the cost functional J : U × Y → R
is bounded below on the set Ξ. Let us assume the converse. Then there
exists a sequence {(uk, yk)}k∈N ∈ Ξ such that J(uk, yk) < −k for all k ∈ N.
By the initial assumptions, we have {uk}k∈N ⊂ Uad; hence, the sequence
{uk}k∈N is bounded in

[BVloc(Rn)×BVloc((0, T )× Rn)] ∩ [L∞(Rn)× L∞((0, T )× Rn)] .

Thus, we may assume that (see Proposition 3) uk → u in Uloc and, there-
fore, u ∈ Uad. Since the mapping (11) is Lipschitz continuous, by the
Ascoli-Arzelȧ Theorem it follows that {yk = y(uk)}k∈N ∈ Yad is a bounded
sequence in Yloc and there exists an element y ∈ Yloc such that, passing to
a subsequence if necessary, we obtain yk → y in Yloc. Then, having used
the sequential lower semicontinuity of J , we come to the contradiction

J(u, y) ≤ lim inf
k→∞

J(uk, yk) < −∞.

Thus, the cost functional J : U × Y → R is bounded below on the set Ξ.
Let {(uk, yk)}k∈N ⊂ Ξ be a minimizing sequence for the original problem,
i.e.

lim
k→∞

J(uk, yk) = inf
(u,y)∈Ξ

J(u, y) > −∞.
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Following the previous arguments, we may assume that there exists a pair
(u0, y0) such that

uk → u0 in L1(D)×L1(DT ) and yk → y0 in C([0, T ];L1(D)). (12)

Taking this fact into account, we can pass to the limit in (9)–(10) as k →∞.
As a result, we immediately come to the conclusion that y = y(u0) is an
entropy solution to the Cauchy problem (2)–(3) under u = u0. In order to
prove the inclusion (u0, y0) ∈ Ξ, we note that the property (12)2 implies the
convergence yk(t, x) → y0(t, x) almost everywhere in DT . Hence, y0 ∈ Yad

by the continuity property of the operator l : R → R. To conclude the
proof, it remains to apply the lower semicontinuity property of J

−∞ < J(u0, y0) ≤ lim
k→∞

J(uk, yk) = inf
(u,y)∈Ξ

J(u, y).

Thus, the pair (u0, y0) is optimal for the problem (1)–(3).

As follows from Theorem 9, the existence of optimal solutions to the
problem (1)–(3) can be obtained by using the compactness arguments and
the regularity assumption (A1). However, because of the state constraints
y ∈ Yad the regularity of the OCP (1)–(3) (see (A1)) is an open ques-
tion even for the simplest situation. So, the first question to be answered
for this problem is about admissibility: does there exist at least one pair
(u, y) ∈ Uloc × Yloc such that u = (u0, u1) ∈ Uad, y ∈ Yad, J(u, y) < +∞,
and y = y(u) is an entropy solution to (2)–(3) in the sense of Definition 6?
In fact, one needs the set of admissible pairs to be sufficiently rich in some
sense, otherwise the OCP (1)–(3) becomes trivial. However, from a mathe-
matical point of view, to deal directly with all constraints above presented
is typically very difficult and, except for some special cases, this question is
largely open [17]. Nevertheless, in many applications it is an important task
to find an admissible (or at least an approximately admissible, in a sense
to be made precise) pair when both entropy and state constraints for the
control-state pairs are given. On the other hand, the set Ξ of admissible
solutions may be very “thin” and it is possible that the original problem has
no solutions. In view of this, it is reasonable to weaken the requirements
on admissible solutions to the original OCP. In particular, it would also be
reasonably to assume that the optimality property for the solutions (u, y(u))
holds not strictly but rather with some (possibly high) accuracy. Moreover,
the greatest lower bound of the cost functional is often unattainable on the
given set Ξ. Nevertheless, the absence of a minimum of the functional does
not mean that the problem does not make any sense (see, e.g., [17]), since its
greatest lower bound exists and hence can be approached with some accu-
racy. Thus, an extremal problem may have an approximate or suboptimal
solution even if it is not solvable.
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4. On Vector-Valued Regularization of OCP (1.1)–(1.3)

Taking into account the motivation given above, in this section we will
issue from the supposition that the original OCP (1)–(3) may fail to have
an exact solution (uopt, yopt) ∈ Ξ — namely, the greatest lower bound of
the cost functional can be unattainable on the set Ξ of admissible pairs
or the set Ξ is possibly empty. To construct solutions close to the set of
admissible solutions and guaranteeing the proximity of the cost functional to
its greatest lower bound, we apply the so-called vector-valued approximation
of the original OCP. To do so, we introduce some optimality notion in
partially ordered spaces.

We associate with the set DT = (0, T )×D the objective space L1(DT ).
By default we suppose that L1(DT ), as topological space, is endowed with
the weak topology. Let τ be the weak topology of L1(DT ). Given a subset
S ⊂ L1(DT ), we denote by intτ S and clτ S its interior and closure with
respect to the τ -topology, respectively. We also assume that L1(DT ) is
partially ordered by the natural ordering cone of positive elements Λ, which
is defined as

Λ =
{
f ∈ L1(DT ) : f(x) ≥ 0 almost everywhere on Ω

}
. (13)

Definition 10. (see [16]) An element y∗ ∈ S ⊂ L1(DT ) is said to be
minimal of the set S, if there is no y ∈ S such that y ≤Λ y∗, y 6= y∗, that is

S ∩ (y∗ − Λ) = {y∗}.
Let MinΛ(S) denote the family of all minimal elements of S. Let us

introduce two singular elements −∞Λ and +∞Λ in L1(DT ). We assume
that these elements satisfy the following conditions:

1)−∞Λ ¹ y ¹ +∞Λ, ∀y ∈ L1(DT ); 2) +∞Λ + (−∞Λ) = 0.

Let Y • denote the semi-extended Banach space: Y • = L1(DT ) ∪ {+∞Λ}
assuming that ‖+∞Λ‖L1(DT ) = +∞ and y−λ(+∞Λ) = −∞ ∀ y ∈ L1(DT )
and ∀λ ∈ R+.

Definition 11. We say that a set E is the efficient infimum of a set
S ⊂ L1(DT ) with respect to the τ -topology of L1(DT ) (or shortly (Λ, τ)-
infimum), if E is the collection of all minimal elements of clτ S in the case
when this set is non-empty, and E is equal to {−∞Λ} in the opposite case.

Hereinafter the (Λ, τ)-infimum for S will be denoted by InfΛ,τ S. Thus,
in view of the definition given above, we have

InfΛ,τ S :=
{

MinΛ(clτ S), MinΛ(clτ S) 6= ∅,
−∞Λ, MinΛ(clτ S) = ∅.

Let X∂ be a nonempty subset of a Banach space X, and I : X∂ →
L1(DT ) be some mapping. Note that the mapping I : X∂ → L1(DT ) can



On Approximation of State Constrained Optimal Control Problems 29

be associated with its natural extension Î : X → Y • to the entire space X,
where

Î(x) =
{

I(x), x ∈ X∂ ,
−∞Λ, x /∈ X∂ .

(14)

We say that a mapping I : X∂ → Y • is bounded below if there exists an
element z ∈ L1(DT ) such that z ≤Λ I(x) for all x ∈ X∂ .

Definition 12. A subset A of L1(DT ) is said to be the efficient infimum
of a mapping

I : X∂ → L1(DT )

with respect to the τ -topology of L1(DT ) and is denoted by InfΛ,τ
x∈X∂

I(x),
if A is the (Λ, τ)-infimum of the image I(X∂) of X∂ in L1(DT ), that is,

InfΛ,τ
x∈X∂

I(x) = InfΛ,τ {I(x) : x ∈ X∂} .

Remark 13. It is clear now that if a ∈ InfΛ,τ
x∈X∂

I(x) then

clτ {I(x) : x ∈ X∂} ∩ (a− Λ) = {a}
provided MinΛ [clτ {I(x) : x ∈ X∂}] 6= ∅.

Let {yk}∞k=1 be a sequence in L1(DT ). Let Lτ{yk} denote the set of all
its τ -cluster points in L1(DT ), that is, y ∈ Lτ{yk} if there is a subsequence
{yki}∞i=1 ⊂ {yk}∞k=1 such that yki

τ→ y in L1(DT ) as i → ∞. If this set
is lower unbounded, i.e., InfΛ,τ Lτ{yk} = −∞Λ, we assume that {−∞Λ} ∈
Lτ{yk}. Let x0 ∈ X∂ be a fixed element. In what follows for an arbitrary
mapping I : X∂ → L1(DT ), we define the following sets:

Lσ×τ (I, x0) :=
⋃

{xk}∞k=1∈Mσ(x0)

Lτ{I(xk)}, (15)

Lσ×τ
min (I, x0) := Lσ×τ (I, x0) ∩ InfΛ,τ

x∈X∂
I(x), (16)

where Mσ(x0) is the set of all sequences {xk}∞k=1 ⊂ X such that xk → x0

with respect to a σ-topology of X.
We are now able to introduce the notion of the lower limit for the vector-

valued mappings.

Definition 14. We say that a subset A ⊂ L1(DT ) ∪ {±∞Λ} is the Λ-
lower sequential limit of the mapping I : X∂ → L1(DT ) at the point x0 ∈ X∂

with respect to the product topology σ× τ of X ×L1(DT ), and we use the
notation A = lim infΛ,τ

x
σ→ x0

I(x), if

lim infΛ,τ

x
σ→ x0

I(x) :=

{
Lσ×τ

min (I, x0), Lσ×τ
min (I, x0) 6= ∅,

InfΛ,τ Lσ×τ (I, x0), Lσ×τ
min (I, x0) = ∅.

(17)



30 P. I. Kogut, R. Manzo

Remark 15. Note that in the scalar case (I : X∂ → R) the sets

InfΛ,τ
x∈X∂

I(x) and InfΛ,τ Lσ×τ (I, x0)

are singletons. Therefore, if Lσ×τ
min (I, x0) 6= ∅ then we have

Lσ×τ
min (I, x0) = Lσ×τ (I, x0) ∩ InfΛ,τ

x∈X∂
I(x)

= InfΛ,τ Lσ×τ (I, x0) ∩ InfΛ,τ
x∈X∂

I(x) = InfΛ,τ Lσ×τ (I, x0).

Hence the choice rules in (17) coincide and we come to the classical definition
of the lower limit.

By analogy with [19] (see also [8, 9, 18]), we use the following concept of
lower semicontinuity for vector-valued mappings.

Definition 16. We say that a mapping f : X∂ → Y is (Λ, σ × τ)-
lower semicontinuous ((Λ, σ × τ)-lsc) at the point x0 ∈ X∂ if f(x0) ∈
lim infΛ,τ

x
σ→ x0

f̂(x). A mapping f is (Λ, σ × τ)-lsc if f is (Λ, σ × τ)-lsc at
each point of X∂ .

Before proceeding further, we note that the concept of (Λ, σ × τ)-lower
semicontinuity for the vector-valued mappings, given above, is more general
than the well known extensions of the “scalar” notion of lower semiconti-
nuity to the vector-valued case (see, for example, [1–3, 22, 23]). The main
motivation to introduce this concept is the following observation.

Proposition 17 ( [19]). Let X be a Banach space, and let Y be a par-
tially ordered Banach space with an ordering closed pointed cone Λ. Let X∂

be a non-empty subset of X and let f : X∂ → Y be a given mapping. If
x0 ∈ X∂ is any (Λ, τ)-efficient solution to the vector optimization problem
InfΛ,τ

x∈X∂
f(x), then the mapping f : X∂ → Y is (Λ, σ × τ)-lsc at this point

for any Hausdorff topology σ on X.

Turning back to the OCP (1)–(3), we make use of the following assump-
tion:

(A2): The cost functional J : U× Y→ R in (1) has the representation

J(u, y) =
∫ T

0

∫

D

F (u, y) dx dt, (18)

where F : Uloc × Yloc → L1(DT ) is (Λ, σ × τ)-lsc on Uloc × Yloc in
the sense of Definition 16 and σ stands for the strong topology of
L1(D)× L1 ((0, T )×D).

Another motivation to consider the cost functional in the form (18) with
properties given by Hypothesis (A2), is presented in Remark 18. Further,
we note that the assertions

|l(y)|+ l(y) = 0 almost everywhere in DT and y ∈ Yad
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are evidently equivalent on the set y ∈ C([0, T ];L1
loc(Rn)). As the same

time, in a general case, we have |l(y)| + l(y) ≥ 0 almost everywhere in
DT = (0, T )×D. It means that

|l(y)|+ l(y) ∈ Λ =
{
f ∈ L1(DT ) : f(x) ≥ 0 almost everywhere on Ω

}

.
Taking this observation into account, we introduce the following family

of vector-valued penalized problems

Find InfΛ,τ

(u,y)∈Ξ
Fε(u, y) = InfΛ,τ

(u,y)∈Ξ

[
F (u, y) + ε−1

(
|l(y)|+ l(y)

)]
, (19)

where the set Ξ of admissible solutions is defined as follows: (u, y) ∈ Ξ if
and only if

u ∈ Uad, y ∈ [C([0, T ];L1
loc(Rn))× L∞(ΩT )× L∞(0, T ; BV (D)), (20)

y = y(u) is an entropy solution to (2)–(3) in the sense of Definition 6.
(21)

Remark 18. It is clear that Ξ ⊂ Ξ for every ε > 0 and Ξ 6= ∅ by
Theorem 7. Moreover, following arguments of the proof of Theorem 9,
we have the following important property of the set Ξ: this set is se-
quentially compact with respect the w-convergence. Here, a sequence of
pairs {(uk, yk)}k∈N ⊂ Ξ is said to be w-convergent to a pair (u, y) ∈[
L1

loc(Rn)× L1
loc(ΩT )

]×C([0, T ]; L1
loc(Rn)) if u0,k → u0 in L1(Q), u1,k → u1

in L1((0, T ) × Q), and yk → y in C([0, T ];L1(Q)) for every open bounded
domain Q ⊂ Rn.

We introduce now the following concept.

Definition 19. A pair (ueff
ε , yeff

ε ) ∈ Ξ is said to be a (Λ, τ)-efficient
solution to the problem (19) if (ueff

ε , yeff
ε ) realizes the (Λ, τ)-infimum of

the mapping Fε : Ξ → L1(DT ), that is,

Fε(ueff
ε , yeff

ε )) ∈ InfΛ,τ

(u,y)∈Ξ
Fε(u, y) = InfΛ,τ

{Fε(u, y) : ∀ (u, y) ∈ Ξ
}

.

We denote by

Eff(Ξ; Fε; τ ; Λ)

=
{

(ueff
ε , yeff

ε ) ∈ Ξ : Fε(ueff
ε , yeff

ε ) ∈ InfΛ,τ

(u,y)∈Ξ
,Fε(u, y)

}
(22)

the set of all (Λ)-efficient solutions to the vectorial problem (19).
In what follows, we associate with the vector optimization problem (19)

the following scalar minimization problem

Fλ
ε (u, y) = 〈λ,Fε(u, y)〉L∞(DT );L1(DT )

→ inf subject to (u, y) ∈ Ξ ⊂ Uloc × Yloc (23)
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where λ is an element of the dual cone

K = Λ∗ =
{

λ ∈ L∞(DT ) :

〈λ, f〉L∞(DT );L1(DT ) =
∫ T

0

∫

D

λf dx dt ≥ 0 for all f ∈ Λ
}

. (24)

Remark 20. Since the set Ξ is sequentially w-compact, it follows that
the constrained minimization problem (23) has a non-empty set of solu-
tions, provided Fλ

ε (·) : Ξ → R is a proper lower w-semicontinuous func-
tion. However, the characteristic feature of the vector optimization prob-
lem (19) is the fact that with any (Λ, w× τ)-lower semicontinuous mapping
Fε : Ξ → L1(DT ), which is neither lower semicontinuous nor quasi-lower
semicontinuous on Ξ, there can be always associated a scalar minimization
problem (23) for which the corresponding cost functional Fλ

ε : Ξ → R is
not lower w-semicontinuous on Ξ. Indeed, let (u0, y0) be a pair of Ξ where
the quasi-lower semicontinuity of Fε fails. Then there exists at least one
element a∗ ∈ clτ

(Fε(Ξ)
)

such that

a∗ ∈ lim infΛ,τ

(u,y)
w→ (u0,y0)

Fε(u, y),

Fε(u0, y0) ∈ lim infΛ,τ

(u,y)
w→ (u0,y0)

Fε(u, y),

and a∗ ≯ Fε(u0, y0).

(25)

Let {(uk, yk)}∞k=1 ⊂ Ξ be a sequence such that

(uk, yk) w→ (u0, y0) in Uloc × Yloc and Fε(uk, yk) τ→ a∗ in L1(DT ).

Since a∗ ≯Λ Fε(u0, y0), it follows that a∗−Fε(u0, y0) 6∈ Λ and, hence, there
exists a vector λ∗ ∈ K such that

〈
λ∗, a∗ −Fε(u0, y0)

〉
L∞(DT );L1(DT )

< 0.

As a result, we have

lim inf
k→∞

Fλ∗
ε (uk, yk) = lim

k→∞
〈λ∗,Fε(uk, yk)〉L∞(DT );L1(DT )

= 〈λ∗, a∗〉L∞(DT );L1(DT ) <
〈
λ∗,Fε(u0, y0)

〉
L∞(DT );L1(DT )

= Fλ∗
ε (u0, y0).

Thus, the lower w-semicontinuity property for Fλ∗
ε fails at (u0, y0). More-

over (see [19]), for (Λ, w × τ)-lower semicontinuous mappings Fε : Ξ →
L1(DT ) a situation is possible when none of the scalar functions Fλ

ε (u, y) =
〈λ,Fε(u, y)〉L∞(DT );L1(DT ) is lower w-semicontinuous for any λ ∈ K]. Here
K] is the set of all quasi-interior points of K, i.e. λ ∈ K] if λ ∈ K
and 〈λ, b〉L∞(DT );L1(DT ) > 0 for all b ∈ Λ \ {0}. Having put λ(t, x) = 1
a.e. in DT and ε = 0, this leads us to the conclusion: the cost functional
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J : Uad×Y→ R for the original OCP (1)–(3) can lose the w-lower semicon-
tinuity property even if the mapping F : Ξ → L1(DT ) is (Λ, w × τ)-lower
semicontinuous.

The main property of the scalar minimization problem (23) can be char-
acterized as follows.

Theorem 21. Assume that the initial assumptions (6)–(7) hold true and
there are a pair (u0, y0) ∈ Ξ and an element λ ∈ K] such that

(u0, y0) ∈ Argmin
(u,y)∈Ξ

〈
λ,Fλ

ε (u, y)
〉

L∞(DT );L1(DT )
.

Then (u0, y0) is a (Λ, τ)-efficient solution to the problem (19)–(21).

Proof. By the initial assumptions, we have

Fλ
ε (u0, y0)−Fλ

ε (u, y)

=
〈
λ,Fε(u0, y0)−Fε(u, y)

〉
L∞(DT );L1(DT )

≤ 0, ∀ (u, y) ∈ Ξ. (26)

Let z be any element of the set clτ Fε(Ξ). Then there exists a sequence
{(uk, yk)}∞k=1 ⊂ Ξ such that Fε(uk, yk) τ→ z in L1(DT ) as k →∞. Hence,
in view of (26), we get

〈
λ,Fε(u0, y0)−Fε(uk, yk)

〉
L∞(DT );L1(DT )

≤ 0, ∀ k ∈ N. (27)

Passing to the limit in (27) as k →∞, we obtain
〈
λ,Fε(u0, y0)− z

〉
L∞(DT );L1(DT )

≤ 0, ∀ z ∈ clFε(Ξ). (28)

Let us assume that (u0, y0) 6∈ Eff(Ξ; Fε; τ ; Λ). Then there exists an element
h ∈ clτ Fε(Ξ) such that h <Λ Fε(u0, y0). So, Fε(u0, y0)−h ∈ Λ\{0}. Hence,
by definition of the set K],

〈Fε(u0, y0)− h, λ
〉

L∞(DT );L1(DT )
> 0, and we

come to a contradiction with (28). So, (u0, y0) ∈ Eff(Ξ; Fε; τ ; Λ) and this
concludes the proof.

In view of Remark 20, it is reasonably now to present some results con-
cerning the solvability of the vector optimization problem (19)–(21). To
this end, we can apply Theorem 3.5 from [19]. Since the set Ξ ⊂ Uad×Yloc

is sequentially w-compact and, hence, it is bounded (see Theorem 7 and
Remark 18), we make the following hypothesis.

(A3): There exists a couple of functions ϕ,ψ ∈ L1(DT ) such that the
estimate∫

Q

|ψ| dz ≤ ‖F (u(·, ·), y(·, ·))‖L1(Q) ≤
∫

Q

|ϕ| dz, ∀ (u, y) ∈ Ξ, ∀Q ⊆ D

(29)
is valid.

It leads us to the following assertion.
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Theorem 22. Assume the Hypotheses (A1)–(A3) hold true and F : Ξ →
L1(DT ) is a (Λ, w×τ)-lower semicontinuous mapping. Then the vector opti-
mization problem (19)–(21) has a non-empty set of (Λ, τ)-efficient solutions
for every ε > 0.

Proof. To begin with, we note that due to Hypothesis (A3), the sequence
{F (uk, yk)}k∈N is L1(DT )-bounded and equi-integrable for any sequence of
prototypes {(uk, yk)}k∈N ⊂ Ξ. Hence, {F (uk, yk)}k∈N is relatively weakly
compact in L1(DT ). In order to apply Theorem 3.5 from [19] to our case, we
have to show that the mapping Fε : Ξ → L1(DT ) possesses the (Λ, w × τ)-
lower semicontinuity property. To do so, we note that the mapping l : R→
R+ is continuous. Hence, for any w-convergent sequence (uk, yk) w→ (u, y)
in Uloc × Yloc, we have

‖|l(yk)|+ l(yk)− |l(y)| − l(y)‖L1(DT )

≤
∥∥|l(yk)|| − |l(y)||

∥∥
L1(DT )

+ ‖l(yk)| − l(y)|‖L1(DT )

≤ 2‖l(yk)| − l(y)|‖L1(DT ) =
∫ T

0

∫

D

|l(yk)| − l(y)| dx dt

≤ ‖l(yk)| − l(y)‖C([0,T ];L1(D))T → 0 as k →∞.

Thus, |l| + l : Uloc × Yloc → L1(DT ) is continuous as a mapping from
Uloc × Yloc with the topology induced by w-convergence to the Banach
space L1(DT ) endowed with the strong topology. Since

Fε(u, y) = F (u, y) + ε−1
(
|l(y)|+ l(y)

)
, ∀(u, y) ∈ Ξ

and F : Ξ → L1(DT ) is the (Λ, w × τ)-lower semicontinuous mapping, we
obtain the required property (for more details we refer to [18]).

Further, we present some results which play an essential role in the study
of OCP (1)–(3).

Proposition 23. If there exist a couple of values ε1 > 0 and ε2 > 0
such that ε1 6= ε2 and

InfΛ,τ

(u,y)∈Ξ
Fε1(u, y) ∩ InfΛ,τ

(u,y)∈Ξ
Fε2(u, y) 6= ∅ (30)

then, under suppositions of Theorem 22, the original OCP (1)–(3) is regular,
i.e. Ξ 6= ∅.
Proof. For simplicity we suppose that ε1 < ε2. As Theorem 22 indicates, for
given ε1 > 0 and ε2 > 0 the corresponding sets of (Λ, τ)-efficient solutions
Eff(Ξ; Fε1 ; Λ) and Eff(Ξ; Fε2 ; τ ; Λ) are nonempty. For now we assume
that

Eff(Ξ; Fε1 ; τ ; Λ) ∩ Eff(Ξ; Fε2 ; τ ; Λ) = ∅.



On Approximation of State Constrained Optimal Control Problems 35

At the same time, the condition (30) ensures the existence of pairs

(u0
ε1

, y0
ε1

) ∈ Eff(Ξ; Fε1 ; τ ; Λ) and (u0
ε2

, y0
ε2

) ∈ Eff(Ξ; Fε2 ; τ ; Λ)

such that
Fε1(u

0
ε1

, y0
ε1

) = Fε2(u
0
ε2

, y0
ε2

). (31)

Since (u0
ε2

, y0
ε2

) 6∈ Eff(Ξ; Fε1 ; τ ; Λ), it follows that

Fε1(u
0
ε2

, y0
ε2

) �Λ Fε1(u
0
ε1

, y0
ε1

). (32)

On the other hand, in view of the structure of objective mapping Fε : Ξ →
L1(DT ) and condition (31), we have

Fε1(u
0
ε2

, y0
ε2

) ≥Λ Fε2(u
0
ε2

, y0
ε2

) = Fε1(u
0
ε1

, y0
ε1

).

As a result, combining the last inequality with (32), we come to the contra-
diction:

Fε1(u
0
ε1

, y0
ε1

) �Λ Fε1(u
0
ε1

, y0
ε1

).

Hence, there exists at least one pair (u∗, y∗) ∈ Ξ such that

(u∗, y∗) ∈ Eff(Ξ; Fε1 ; τ ; Λ) ∩ Eff(Ξ; Fε2 ; τ ; Λ).

Then, in view of relation (30), we obtain

F (u∗, y∗) + ε−1
1

(
|l(y∗)|+ l(y∗)

)
= Fε1(u

∗, y∗)

= Fε2(u
∗, y∗) = F (u∗, y∗) + ε−1

2

(
|l(y∗)|+ l(y∗)

)
a.e. in DT .

Whence (ε−1
1 − ε−1

2 )
(
|l(y∗)|+ l(y∗)

)
= 0. Since ε1 6= ε2 it follows that

|l(y∗(t, x))|+ l(y∗(t, x)) = 0 for almost all (t, x) ∈ DT .

However, this relation is equivalent to the inequality l(y∗(t, x)) ≤ 0 a.e.
in DT . Taking into account that y∗ = y(u∗) ∈ C([0, T ]; L1

loc(Rn)) as an
entropy solution of (2)–(3), we conclude: y∗ ∈ Yad and, therefore, (u∗, y∗) ∈
Ξ. The proof is complete.

Proposition 24. If the original OCP (1)–(3) admits at least one opti-
mal solution (u0, y0) ∈ Ξ, then, under suppositions of Theorem 22, there
exists ε0 > 0 such that

(u0, y0) ∈ Eff(Ξ; Fε; τ ; Λ) ∀ ε ≤ ε0. (33)

Proof. Let us assume, by contradiction, that there is a monotonically de-
creasing sequence {εk}∞k=1 ⊂ R+ such that limk→∞ εk = 0 and (u0, y0) 6∈
Eff(Ξ; Fεk

; τ ; Λ). Then there exists a sequence of pair
{
(u∗k, y∗k) ∈ Ξ

}∞
k=1

such that

Fεk
(u∗k, y∗k) <Λ Fεk

(u0, y0) ≡ F (u0, y0), ∀ k ∈ N. (34)
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Hence,

ε−1
k

(
|l(y∗k)|+ l(y∗k)

)
<Λ F (u0, y0)− F (u∗k, y∗k) a.e. in DT , ∀ k ∈ N. (35)

Since the set Ξ ⊂ Uad ×Yloc is sequentially w-compact (see Theorem 7 and
Remark 18) and the mapping F : Ξ → L1(DT ) possesses the (Λ, w × τ)-
lower semicontinuity property, it follows that the right-hand side in (35) is
uniformly bounded in L1(DT ) with respect to k ∈ N. Hence, passing to
the limit in (34) as k → ∞ we come into conflict with the boundedness of
F (u0, y0)− F (u∗k, y∗k) provided

(
|l(y∗k)|+ l(y∗k)

)
6= 0 on some subset of DT

with positive Lebesgue measure. Thus, this contradiction means that there
exists k∗ ∈ N such that |l(y∗k)|+ l(y∗k) = 0 almost everywhere in DT for all
k > k∗. Hence, yk ∈ Yad ∀ k > k∗. Taking this observation into account,
the inequality (35) implies relation F (u∗k, y∗k) <Λ F (u0, y0) for k > k∗. As
a result, we come to the contradiction with the initial assumptions

J(u∗k, y∗k) :=
∫ T

0

∫

D

F (u∗k, y∗k) dx dt <

∫ T

0

∫

D

F (u0, y0) dx dt =: J(u0, y0) ∀ k > k∗.

The proof is complete.

Taking these results into account, we introduce the following concept.

Definition 25. We say that a sequence {(uk, yk)}∞k=1 in Uloc × Yloc is
a weakened minimizing sequence if uk ∈ Uad, yk = y(uk) is an entropy
solution to (2)–(3) in the sense of Definition 6 for every k ∈ N,

uk → û in Uloc , yk → ŷ in Yloc , lim
k→∞

l(yk)(t, x) ≤ 0 a.e. in DT ,

F (uk, yk) τ→ ξ ∈ InfΛ,τ

(u,y)∈Ξ
F (u, y) in L1(DT ).

Moreover, if for every ε > 0 and any ε-neighborhood Vτ (ξ) of ξ in〈
L1(DT ), τ

〉
there exist a neighborhood O(û, ŷ) of (û, ŷ) in the strong topol-

ogy of Uloc × Yloc, a pair (ûε, ŷε), and a positive value δ such that the
conditions

(ûε, ŷε) ∈ O(û, ŷ) ∩ (Uad × Yloc) , F (ûε, ŷε) ∈ Vτ (ξ),

ŷε = y(ûε) is an entropy solution to (2)–(3) in the sense of Definition 6,

l(ŷε(t, x)) ≤ Cε a.e. in DT , C > 0 (36)

hold true, then (ûε, ŷε) is said to be a weakened ε-approximate solution to
the problem (1)–(3).

Further, we consider the following family of scalar optimization problems

sc−w
[Fλ

ε

]
(u, y) = sc−w 〈λ,Fε(u, y)〉L∞(DT );L1(DT ) → inf (37)

subject to (u, y) ∈ Ξ ⊂ Uloc × Yloc, λ ∈ K. (38)
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Here, sc−w
[Fλ

ε

]
: Ξ → R denote the lower w-semicontinuous envelope of the

functional
[Fλ

ε

]
(u, y) = 〈λ,Fε(u, y)〉L∞(DT );L1(DT ) with some λ ∈ K = Λ∗,

that is, sc−w
[Fλ

ε

]
is the greatest lower w-semicontinuous functional ma-

jorized by Fλ
ε on Ξ. Then, following the direct method in the Calculus

of Variations and taking into account that the set Ξ ⊂ Uad×Yloc is sequen-
tially w-compact, we get:

Proposition 26. Every minimizing sequence for

inf
(u,y)∈Ξ

sc−w
[Fλ

ε

]
(u, y)

has a w-cluster point which is a minimum point of sc−w
[Fλ

ε

]
on Ξ.

We are now able to prove the main result of this article.

Theorem 27. Assume that the initial assumptions (6)–(7) hold true and
the cost functional J : U × Y → R in (1) has the representation (18) with
property (A3), where F : Uloc × Yloc → L1(DT ) is a given mapping (not
necessary (Λ, w)-lsc on Ξ). Then

⋃

λ∈K]

Argmin
(u,y)∈Ξ

sc−w
[Fλ

ε

]
(u, y) (39)

forms a set of weakened ε-approximate solutions to the problem (1)–(3)
provided this problem is regular.

Proof. We divide this proof into several steps. Step 1. First we study the
property of the sets Argmin

(u,y)∈Ξ

sc−w
[Fλ

ε

]
(u, y). Let λ be any element of K]

and let ε > 0 be a given value. Then, by Proposition 26, there exists at
least one pair (u∗ε, y

∗
ε ) ∈ Ξ such that

(u∗ε, y
∗
ε ) ∈ Argmin

(u,y)∈Ξ

sc−w
[Fλ

ε

]
(u, y). (40)

Since sc−w
[Fλ

ε

]
(u, y) is the lower w-semicontinuous envelope of the func-

tional
Fλ

ε (u, y) = 〈λ,Fε(u, y)〉L∞(DT );L1(DT ) ,

it follows that there exists a sequence of pairs {(uε
k, yε

k)}∞k=1 ⊂ Ξ such that

(uε
k, yε

k) w→ (u∗ε, y
∗
ε ) as k →∞ (41)

and

lim
k→∞

〈λ,Fε(uε
k, yε

k)〉L∞(DT );L1(DT )

= sc−w
[Fλ

ε

]
(u∗ε, y

∗
ε )

by condition (40)

≤ sc−w
[Fλ

ε

]
(u, y)

≤ 〈λ,Fε(u, y)〉L∞(DT );L1(DT ) ∀(u, y) ∈ Ξ. (42)
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Hypothesis (A3) implies that there exist an integer k̂ ∈ N and an element
ζ̂ε ∈ L1(DT ) such that

〈
λ,Fε(uε

k, yε
k)

〉
L∞(DT );L1(DT )

<
〈
λ, ζ̂ε

〉
L∞(DT );L1(DT )

∀ k > k̂.

Since λ ∈ K], this implies the estimate ‖Fε(uε
k, yε

k)‖L1(DT ) ≤ ‖ζ̂ε‖L1(DT )

for all k > k̂. Hence, without loss of generality, we may suppose that the
sequence {Fε(uε

k, yε
k)}∞k=1 is bounded in L1(DT ) and equi-integrable. So,

there exist an element ηε ∈ L1(DT ) and a subsequence of {Fε(uε
k, yε

k)}∞k=1

(still denoted by subscript k) such that Fε(uε
k, yε

k) τ→ ηε in L1(DT ) as
k →∞.

For now we assume that

ηε 6∈ InfΛ,τ

(u,y)∈Ξ
Fε(u, y). (43)

Hence, an element ξ ∈ InfΛ,τ

(u,y)∈Ξ
Fε(u, y) can be found such that ξ <Λ ηε.

Therefore, ηε − ξ ∈ Λ \ {0}, and using the fact that λ ∈ K], we just come
to the inequality

〈λ, ηε〉L∞(DT );L1(DT ) > 〈λ, ξ〉L∞(DT );L1(DT )

which is equivalent to

lim
k→∞

〈λ,Fε(uε
k, yε

k)〉L∞(DT );L1(DT ) > 〈λ, ξ〉L∞(DT );L1(DT ) . (44)

On the other hand, for the element ξ ∈ InfΛ,τ

(u,y)∈Ξ
Fε(u, y) there exists a

sequence {(vk, zk)}∞k=1 ⊂ Ξ such that Fε(vk, zk) τ→ ξ in L1(DT ). Since the
set Ξ is sequentially w-compact, we may suppose that (vk, zk) w→ (v∗, z∗) ∈
Ξ. Then, by inequality (42), we deduce

lim
k→∞

〈λ,Fε(uε
k, yε

k)〉L∞(DT );L1(DT ) ≤ 〈Fε(vi, zi), λ〉L∞(DT );L1(DT ) , ∀ i ∈ N.

(45)
Passing to the limit in (45) as i →∞, we get

lim
k→∞

〈λ,Fε(uε
k, yε

k)〉L∞(DT );L1(DT ) ≤ 〈λ, ξ〉L∞(DT );L1(DT ) .

However, this contradicts (44) and, hence, (43). Thus,

(uε
k, yε

k) w→ (u∗ε, y
∗
ε ) and Fε(uε

k, yε
k) τ→ ηε ∈ InfΛ,τ

(u,y)∈Ξ
Fε(u, y) in L1(DT )

(46)
as k →∞.

Step 2. Our next intention is to prove that the sequence {(u∗ε, y∗ε )}ε→0 ⊂
Ξ, which were obtained in the previous step, contains a subsequence, still
denoted by the suffix ε, such that (u∗ε, y

∗
ε ) w→ (u∗, y∗) as ε → 0 and

(u∗, y∗) ∈ Ξ. In the same way as in the proof of Theorem 7, we can conclude
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that the sequence
{
(u∗ε, y

∗
ε ) ∈ Ξ

}
ε>0

is relatively w-compact and, passing to
a subsequence if necessary, we get

(u∗ε, y
∗
ε ) w→ (u∗, y∗), where (u∗, y∗) ∈ Ξ. (47)

Let us prove that y∗ ∈ Yad. Let (u, y) be any admissible pair to the original
problem, that is, (u, y) ∈ Ξ (here, Ξ 6= ∅ by the regularity assumption).
Then

(
|l(y)|+ l(y)

)
= 0. Therefore,

Fε(u∗ε, y
∗
ε ) := F (u∗ε, y

∗
ε ) + ε−1

(
|l(y∗ε )|+ l(y∗ε )

)
≯Λ Fε(u, y) ≡ F (u, y)

for ε > 0 small enough.
By the initial assumptions the set {F (u∗ε, y

∗
ε )}ε>0 is bounded below, say

by z ∈ L1(DT ). The latter yields ε−1
(
|l(y∗ε )| + l(y∗ε )

)
≯Λ w, with w =

F (u, y)− z, i.e. |l(y∗ε )|+ l(y∗ε ) ≯Λ εw. On the other hand, |l(y∗ε )|+ l(y∗ε ) ≥Λ

0L1(DT ) ∀ ε > 0. Hence, passing to the limit as ε → 0 in the above relations
and using the fact that εw → 0L1(DT ) and y∗ε → y∗ in C([0, T ];L1(D)), we
come to the inequality

0L1(DT ) ≤ lim inf
ε→0

(
|l(y∗ε )|+ l(y∗ε )

)
≯Λ 0L1(DT ).

Hence, lim infε→0

(
|l(y∗ε )|+ l(y∗ε )

)
= 0 and, in view of the continuity prop-

erty of l, we obtain(
|l(y∗)|+ l(y∗)

)
= lim inf

ε→0

(
|l(y∗ε )|+ l(y∗ε )

)
= 0.

Since this is equivalent to the inequality l(y∗(t, x)) ≤ 0 almost everywhere
in DT , it follows that the limit pair (u∗, y∗) is an admissible solution to
the original OCP (1)–(3). Moreover, using hypothesis (A3) and applying
similar arguments as we did it before, it can be shown that the sequence
{F (u∗ε, y

∗
ε )}ε→0 is relatively τ -compact in L1(DT )). Hence there exists an

element η ∈ L1(DT ) such that within a subsequence, we have

F (u∗ε, y
∗
ε ) τ→ η in L1(DT ) as ε → 0. (48)

Step 3 deals with the limiting properties of the sequence{
sc−w

[Fλ
ε

]
: Ξ → R

}
ε→0

.

We note that this sequence of functionals is monotonically increasing and
for every ε > 0 we can write down

sc−w
[Fλ

ε

]
(u, y) = sc−w 〈λ, F (u, y)〉L∞(DT );L1(DT )

+ ε−1

∫

DT

λ
(
|l(y)|+ l(y)

)
dz (49)

(by continuity of l : Ξ → L1(DT ) as a mapping from Uloc × Yloc with the
topology induced by w-convergence to the Banach space L1(DT ) endowed
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with the strong topology). Hence, this sequence admits the existence of
Γ(w)-limit with the following representation (see [7])

Γ(w)− lim
ε→0

sc−w
[Fλ

ε

]
(u, y)

= Γ(w)− lim
ε→0

[
sc−w 〈λ, F (u, y)〉L∞(DT );L1(DT )

]

+ lim
ε→0

[
ε−1

∫

DT

λ
(
|l(y)|+ l(y)

)
dz

]

= sc−w 〈λ, F (u, y)〉L∞(DT );L1(DT ) + lim
ε→0

[
ε−1

∫

DT

λ
(
|l(y)|+ l(y)

)
dz

]

=

{
sc−w 〈λ, F (u, y)〉L∞(DT );L1(DT ) , (u, y) ∈ Ξ,

+∞, (u, y) ∈ Ξ \ Ξ.
(50)

Applying the main variational properties of Γ(w)-limit to the functional

Γ(w)− lim
ε→0

sc−w
[Fλ

ε

]
: Ξ → R,

we come to the following assertions (see [7]).
1.: Convergence of minimal values:

lim
ε→0

min
(u,y)∈Ξ

sc−w
[Fλ

ε

]
(u, y)

by Step 2
= lim

ε→0
Fλ

ε (u∗ε, y
∗
ε )

= min
(u,y)∈Ξ

(
Γ(w)− lim

ε→0
sc−w

[Fλ
ε

]
(u, y)

)

by (50)
= min

(u,y)∈Ξ

(
sc−w 〈λ, F (u, y)〉L∞(DT );L1(DT )

)
. (51)

2.: Convergence of minimizers:

(u∗ε, y
∗
ε ) w→ (u∗, y∗) ∈ Argmin

(u,y)∈Ξ

(
sc−w 〈λ, F (u, y)〉L∞(DT );L1(DT )

)

= Argmin
(u,y)∈Ξ

(
Γ(w)− lim

ε→0
sc−w

[Fλ
ε

]
(u, y)

)
. (52)

3.: Sequential properties:

lim
ε→0

sc−w
[Fλ

ε

]
(uε, yε) ≥

(
Γ(w)− lim

ε→0
sc−w

[Fλ
ε

])
(u∗, y∗)

= sc−w 〈λ, F (u∗, y∗)〉L∞(DT );L1(DT ) (53)

for any sequence {(uε, yε)}ε>0 ⊂ Ξ such that (uε, yε)
w→ (u∗, y∗) as

ε → 0.
Step 4. This step concludes the proof. As it was shown before, we have

the following property F (u∗ε, y
∗
ε ) τ→ η in L1(DT ) as ε → 0. Our aim is
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to prove that η ∈ InfΛ,τ
(u,y)∈Ξ F (u, y) in L1(DT ). To do so, we assume the

converse:
η 6∈ InfΛ,τ

(u,y)∈Ξ F (u, y). (54)

Hence, there can be found an element ξ ∈ InfΛ,τ
(u,y)∈Ξ F (u, y) such that ξ <Λ

η. Therefore, η− ξ ∈ Λ \ {0}, and using the fact that λ ∈ K], we just come
to the inequality

〈λ, η〉L∞(DT );L1(DT ) > 〈λ, ξ〉L∞(DT );L1(DT )

which is equivalent to

lim
ε→0

〈λ, F (u∗ε, y
∗
ε )〉L∞(DT );L1(DT ) > 〈λ, ξ〉L∞(DT );L1(DT ) . (55)

On the other hand, for the element ξ ∈ InfΛ,τ
(u,y)∈Ξ F (u, y) there exists a

sequence {(vk, zk)}∞k=1 ⊂ Ξ such that F (vk, zk) τ→ ξ in L1(DT ). Since the
set Ξ is sequentially w-compact, we may suppose that (vk, zk) w→ (v∗, z∗) ∈
Ξ.

Further, we note that in view of the convergences (48) and (41) with
properties (46), it follows that combining these with (47) and applying the
diagonal method, we can extract a sequence {k = k(ε)}ε→0 ⊂ N such that

Ξ 3 (uε
k(ε), y

ε
k(ε))

w→ (u∗, y∗) ∈ Ξ as ε → 0,

F (uε
k(ε), y

ε
k(ε))

τ→ η in L1(DT ) as ε → 0.

Then, taking into account variational properties (52)–(53), we obtain

sc−w 〈λ, F (u∗, y∗)〉L∞(DT );L1(DT ) = min
(u,y)∈Ξ

(
sc−w 〈λ, F (u, y)〉L∞(DT );L1(DT )

)
,

(56)

lim
ε→0

〈
λ, F (uε

k(ε), y
ε
k(ε))

〉
L∞(DT );L1(DT )

= sc−w
[
〈λ, F (u∗, y∗)〉L∞(DT );L1(DT )

]

by condition (56)

≤ sc−w
[
〈λ, F (u, y)〉L∞(DT );L1(DT )

]

≤ 〈λ, F (u, y)〉L∞(DT );L1(DT ) ∀(u, y) ∈ Ξ. (57)

As a result, inequality (57) implies

lim
ε→0

〈
λ, F (uε

k(ε), y
ε
k(ε))

〉
L∞(DT );L1(DT )

≤ 〈F (vi, zi), λ〉L∞(DT );L1(DT ) , ∀ i ∈ N. (58)

Passing to the limit in (58) as i →∞, we get

lim
k→∞

〈
λ, F (uε

k(ε), y
ε
k(ε))

〉
L∞(DT );L1(DT )

≤ 〈λ, ξ〉L∞(DT );L1(DT ) .

However, this contradicts (55) and, hence, (54). Thus,

(uε
k(ε), y

ε
k(ε))

w→ (u∗, y∗) and
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Fε(uε
k(ε), y

ε
k(ε))

τ→ η ∈ InfΛ,τ
(u,y)∈Ξ F (u, y) in L1(DT )

as k →∞ and, hence, the elements of the sequence
{

(uε
k(ε), y

ε
k(ε))

}
ε>0

can

be considered as weakened ε-approximate solutions to the problem (1)–(3)
in the sense of Definition 25. Note that the estimate (36) is ensured by
the condition: l(y∗(t, x)) ≤ 0 almost everywhere in DT . This concludes the
proof.
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