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We study vector optimization problems in partially ordered Banach spaces and suppose that
the objective mapping possesses a weakened property of lower semicontinuity and make no as-
sumptions on the interior of the ordering cone. We discuss the so-called adaptive scalarization
of such problems. We show that the corresponding scalar nonlinear optimization problems can
be by-turn approximated by quadratic minimization problems. Such regularization is espe-
cially attractive from a numerical point of view because it gives the possibility to apply rather
simple computational methods for the approximation of the entire set of e�cient solutions.
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1. Introduction

The main goal of this paper is to discuss one class of vector optimization problems
in Banach spaces in the case when the objective vector-valued mapping possesses
a weakened property of lower semicontinuity and the ordering cone is non-solid in
the objective space. We consider vector optimization problems in a special setting,
which involves topological properties of the objective space, and discuss the prob-
lem of their scalarization. We deal with the case when the objective mapping takes
values in a real Banach space Y partially ordered by a pointed cone Λ with possibly
empty topological interior. In contrast to the classical setting of the vector opti-
mization problems (see [1, 3]): �Minimize f(x) with respect to the cone Λ subject
to constraints x ∈ Xad ⊂ X, f : X → Y , � we study the problem in the following
formulation

Find InfΛ,τx∈Xad
f(x) (1)

and associate this problem with the quaternary ⟨Xad, f,Λ, τ⟩, where the essential
counterpart is the choice of the topology τ on the objective space Y .
We also extend the concept of lower semicontinuity for vector-valued mappings,

which is compatible with optimization problems in the form (1), and discuss the

∗Corresponding author. Email: rmanzo@unisa.it

ISSN: 0003-6811 print/ISSN 1563-504X online
c⃝ 2013 Taylor & Francis
DOI: 10.1080/0003681YYxxxxxxxx
http://www.informaworld.com



March 20, 2013 14:50 Applicable Analysis KogutManzo_ApplAnal2

2 P.I. Kogut and R. Manzo

existence of the so-called (Λ, τ)-e�cient solutions to the problem (1). In particular,
we show that the topological properties of the spaces (X,σ) and (Y, τ), where
this problem is considered, play an essential role. In view of this, our main aim is
to discuss a nonlinear scalarization of vector optimization problems (1) with the
so-called epi-lower semicontinuous mappings. Thus, in spite of the fact that the
scalarization of vector optimization problems (1) in the form of weighted sum takes
a rather simple form, this method has some disadvantages. In fact, this approach
allows to determine all e�cient points by an appropriate parameter choice only
for convex problems (see, for instance [1, 4�6]). Moreover, for the objective vector-
valued mapping with weakened properties of lower semicontinuity the inclusion
Argmin
x∈Xad

⟨f(x), λ⟩Y ;V ⊆ Effτ (Xad; f ; Λ) ∀λ ∈ K \0V is not generally valid. Hence,

the scalar problems

Minimize fλ(x) = ⟨f(x), λ⟩Y ;V subject to x ∈ Xad (2)

may produce the appearance of the so-called pseudo-solutions or extra solutions to
the original one. Besides, one of the most important question is that an �even� choice
of elements λ ∈ Λ∗ \ 0V does not guarantee an �even� distribution of the solu-
tions x∗ ∈ Xad to the corresponding vector optimization problem (1) on the set
Effτ (Xad; f ; Λ). So, we cannot ensure that each solution x∗ ∈ Effτ (Xad; f ; Λ) can
be attained by solutions to the scalar problem (2). To our best knowledge, no an-
swers to these questions have been found in the case when f : Xad → Y possesses
a weakened property of lower semicontinuity and Λ is a non-solid cone in Y .
Our main goal in this paper is to consider other type of scalarization for the vector

optimization problem (1). We develop an adaptive approach to the scalarization in
the spirit of Pascoletti�Sera�ni nonlinear scalarization method. An advantage of this
approach is that it allows to approximate the whole set of (Λ, τ)-e�cient solutions.
Moreover, we show that scalar optimization problems which come from Pascoletti�
Sera�ni approach can be approximated by quadratic minimization problems. Such
regularization is especially attractive from a numerical point of view because it
gives the possibility to apply rather simple computational methods for numerical
calculations.

2. Notation and Preliminaries

Let X and Y be two real Banach spaces. We suppose that these spaces, as topologi-
cal spaces, are endowed with some topologies σ = σ(X) and τ = τ(Y ), respectively.
For a subset A ⊂ Y we denote by intτ A and clτ A its interior and closure with
respect to the τ -topology, respectively. We will omit this index if it does not lead to
a misunderstanding. Let Λ be a τ -closed convex pointed cone in Y . No assumption
is imposed on the topological interior of Λ. Throughout this paper, we suppose that
Y is partially ordered with the ordering cone Λ. The cone Λ de�nes a partial order
on Y denoted by ≤Λ, that is, for any elements y, z ∈ Y , we write y ≤Λ z whenever
z ∈ y + Λ and y <Λ z for y, z ∈ Y , if z − y ∈ Λ \ {0Y }. We say that a sequence
{yk}∞k=1 ⊂ Y is decreasing and we use the notation yk ↘ whenever, for all k ∈ N,
we have yk+1 ≤Λ yk. We also say that a sequence {yk}∞k=1 ⊂ Y is bounded below if
there exists an element y∗ ∈ Y such that y∗ ≤Λ yk for all k ∈ N.
Now, we recall some basic notions concerning the semi-ordered spaces and set-

valued mappings. We say that an element y∗ ∈ S ⊂ Y is Λ-minimal for the set S
(see [1]) if there is no y ∈ S such that y <Λ y∗, that is S ∩ (y∗ − Λ) = {y∗}. Let
MinΛ(S) denote the family of all Λ-minimal elements of S.
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Let us introduce two singular elements −∞Λ and +∞Λ in Y . We assume that
these elements satisfy the following conditions: (1) −∞Λ ≼ y ≼ +∞Λ ∀y ∈ Y and
(2) +∞Λ + (−∞Λ) = 0Y . Let Y • denote a semi-extended Banach space: Y • =
Y ∪ {+∞Λ} assuming that ∥+∞Λ∥Y = +∞ and y+ λ(+∞Λ) = +∞ ∀ y ∈ Y and
∀λ > 0. The following concept is crucial in this paper.

Definition 2.1: We say that a set E is the e�cient in�mum of the set S ⊂ Y
with respect to the τ topology of Y (or shortly (Λ, τ)-in�mum) if E is the collection
of all minimal elements of clτ S in the case when this set is non-empty, and E is
equal to {−∞Λ} otherwise.

Hereinafter we denote the (Λ, τ)-in�mum for S by InfΛ,τ S. Thus, in view of the
given above de�nition, we have

InfΛ,τ S :=

{
MinΛ(clτ S), MinΛ(clτ S) ̸= ∅,
−∞Λ, MinΛ(clτ S) = ∅.

As was shown in [7] (see also [8]), in vector-value case a plausible situation is the
following: InfΛ,τ (S) ̸= ∅, MinΛ(S) ̸= ∅, and InfΛ,τ (S) ∩ MinΛ(S) = ∅, in contrast
to the scalar case where the inclusion MinΛ(S) ⊆ InfΛ,τ S is always true.
Let Xad be a non-empty subset of the Banach space X, and let f : Xad → Y

be some mapping. Note that the mapping f : Xad → Y can be associated with its
natural extension f̂ : X → Y • to the whole space X, where f̂(x) = f(x), if x ∈ Xad,

and f̂(x) = +∞Λ otherwise. A mapping f : Xad → Y • is said to be bounded below
if there exists an element z ∈ Y such that z ≤Λ f(x) for all x ∈ Xad.

Definition 2.2: We say that a subset A of Y is the e�cient in�mum of a mapping
f : Xad → Y with respect to the τ -topology of Y and denote it by InfΛ,τx∈Xad

f(x),
if A is the (Λ, τ)-in�mum of the image f(Xad) of Xad in Y , i.e.,

InfΛ,τx∈Xad
f(x) = InfΛ,τ {f(x) : ∀x ∈ Xad} .

Let {yk}∞k=1 be a sequence in Y . Let Lτ{yk} be the set of all its cluster points
with respect to the τ -topology of Y , that is, y ∈ Lτ{yk} if there is a subse-

quence {yki
}∞i=1 ⊂ {yk}∞k=1 such that yki

τ−→ y in Y as i → ∞. If this set is

lower unbounded, i.e., InfΛ,τ Lτ{yk} = −∞Λ, we assume that {−∞Λ} ∈ Lτ{yk}. If
SupΛ,τ Lτ{yk} = +∞Λ, we assume that {+∞Λ} ∈ Lτ{yk}.
Following [2], we introduce the following sets

N∞ := {N ⊆ N | N \N �nite} and N ♯
∞ := {N ⊆ N | N in�nite} .

Let {yk}k∈N be a sequence in Y . We write yk
τ→ y0, if y0 is the limit of the sequence

{yk}k∈N with respect to the τ -topology of Y . Moreover, we write yk
τ,N−→ y0 in

the case of convergence of a subsequence designated by an index set N ∈ N ♯
∞ or

N ∈ N∞. It is clear that every subsequence of {yk}k∈N can be expressed by {yk}k∈N ,
where N belongs to N ♯

∞. In the case of N ∈ N∞, {yk}k∈N denotes a subsequence of
{yk}k∈N that arises by omitting �nitely many members. For instance, a subsequence

of a subsequence {yk}k∈N (N ∈ N ♯
∞) can be expressed by some N ∈ N ♯

∞ with

N ⊆ N as {yk}k∈N .
We say that a sequence of pairs {(xk, yk)}k∈N ⊂ X×Y µ-converges to (x0, y0), if

xk
σ→ x0 and yk

τ→ y0 as k → ∞. Let x0 ∈ Xad be a �xed element. In what follows



March 20, 2013 14:50 Applicable Analysis KogutManzo_ApplAnal2

4 P.I. Kogut and R. Manzo

for an arbitrary mapping f : Xad → Y we make use of the following set

Lµ(f, x0) :=
∪

{xk}∞
k=1∈Mσ(x0)

Lτ{f(xk)}, (3)

where Mσ(x0) is the set of all sequences {xk}∞k=1 ⊂ X such that xk → x0 with
respect to the σ-topology of X.

3. Epi-lower semicontinuous mappings in Banach spaces

In this section we make no additional assumptions on the ordering cone Λ and
its interior. As before, we suppose that Λ is a τ -closed convex pointed cone in Y .
Our aim is to study the lower semicontinuity properties for the so-called locally
Λ-bounded below mappings f : X → Y •, where Y is the dual to some separable
real Banach space V (Y = V ∗) and Y is endowed with the weak-∗ topology τ .
We also note that the following result is well-know in real analysis: a real-valued
function f : X → R is lower semicontinuous if, and only if, this mapping has a
closed epigraph, i.e. epi f = clµ epi f . However, this assertion is not true for the
vector-valued case (see [3]). In view of this, we introduce the following concept (see
[11, 12]).

Definition 3.1: We say that a mapping f : X → Y • is epi-lower semicontinuous
(epi-l.s.c.) at x0 ∈ X with respect to the µ-topology of X × Y , if

f (x0) = infΛLµ (f, x0) . (4)

Here, infΛA denotes the Λ-in�mum of a subset A and it is de�ned as an element
of Y such that: for every y ∈ Y , y ≤Λ infΛA if and only if y ≤Λ z for every z ∈ A.
We say that f is epi-l.s.c. on X if f is epi-l.s.c. at each point x0 ∈ X.

Definition 3.2: We say that a mapping f : X → Y • is locally bounded below
with respect to the cone Λ if for every x0 ∈ dom f there exist an element b ∈ Y
and a neighborhood U(x0) of x0 in X such that b ≤Λ f(x) ∀ x ∈ U(x0).

Remark 1 : As immediately follows from this de�nition if Y = R and Λ = R+

then (4) implies the relation infΛLµ (f, x0) = lim inf
x→x0

f (x). Hence, in the scalar case,

De�nition 3.1 is equivalent to the de�nition of sequential lower semicontinuity of
f : X → R in the classical sense.

Remark 2 : Note also that the property of epi-lower semicontinuity was previ-

ously used in the literature for a sequence of functions {fw}w∈W ⊂ R
X

(see for
example [13, 14]), where X and W are topological spaces. In this case they say

that the family of functions {fw}w∈W ⊂ R
X
is epi-lower semicontinuous at v ∈ W

if lim supw→v epi fw ⊆ epi fv, where the lim supw→v is taken in the sense of Kura-
towski. Basically, this is equivalent to the relation (see [13])

sup
U∈N (x)

sup
V ∈N (v)

inf
w∈V

inf
y∈U

fw(y) ≥ fv(x) ∀x ∈ X. (5)

Therefore, if X = Y = W = R, f : X → Y • = R∪{+∞}, and fw = f , ∀w ∈ R, in-
equality (5) is reduced to f(x) ≤ supU∈N (x) infy∈U =: sc−f(x)f(y) ∀x ∈ X, where

sc−f : R → R represents the so-called lower semicontinuous regularization of the
original function f : R → R (see [15]). Since sc−f(x) ≤ f(x) ∀x ∈ X by default, it
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follows that in this case the epi-lower semicontinuity in the sense of [14] degenerates
into the classical de�nition of lower semicontinuity of real-valued functions. Hence,
in view of Remark 1, De�nition 3.1 and the epi-lower semicontinuity in the sense
of [14] coincide in the above case.

The following statements provide useful properties of epi-lower semicontinuity.

Theorem 3.3 : Let f : X → Y • be a mapping for which its epigraph epi f is a
sequentially µ-closed subset of X × Y . Then f : X → Y • is epi-l.s.c. on X.

Proof : Assume, on the contrary, that there exists an element x0 ∈ X such that
f (x0) ̸= infΛLµ (f, x0). It means that there is a sequence {xk}k∈N ⊂ X with the
properties

xk
σ→ x0, f (xk)

τ→ f∗, f∗ �Λ f (x0) . (6)

Moreover, in this case we have epi f ∋ (xk, f (xk))
µ→ (x0, f

∗). However, as follows
from (6), (x0, f

∗) ̸∈ epi f , which contradicts the µ-closure of the set epi f , and this
ends the proof. �

Lemma 3.4: [1, p.29] Let Y be a real linear space with an ordering cone Λ.
Assume the cone Λ has nonempty algebraic interior, i.e.

corΛ =
{
y ∈ Λ | ∀ y ∈ Y ∃λ > 0 : y + λy ∈ Λ ∀λ ∈ [0, λ ]

}
̸= ∅.

If Λ is algebraically closed and pointed, then there is a norm ∥ · ∥ on Y with the
property that for all y ∈ Λ

x ∈ [0Y , y] = {z ∈ Y | 0Y ≤Λ z ≤Λ y} =⇒ ∥x∥ ≤ ∥y∥. (7)

Taking this result into account we say that the norm ∥·∥ in Banach space Y = V ∗

is Λ-monotone if for every y ∈ Λ the property (7) holds true. Note that the Λ-
monotonicity property of the norm in a partially ordered Banach space Y is not a
greatly restrictive assumption. For instance, if Y = Lp(Ω) with p ∈ (1,+∞), where
Ω is an open bounded domain in RN , is partially ordered by the natural ordering
cone Λ, then the norm in these spaces is Λ-monotone (see [1]) in spite of the fact
that the corresponding cone Λ has an empty topological interior.

Theorem 3.5 : Let Λ be a τ -closed convex pointed ordering cone in Y such that
the norm ∥ · ∥ in Y is Λ-monotone. Let f : X → Y • be a locally bounded below and
epi-l.s.c. mapping on X. Then the epigraph of f is sequentially µ-closed.

Proof : Assume the inverse. Then

∃ {(xk, yk)}k∈N ∈ epi f such that (xk, yk)
µ→ (x0, y0) ̸∈ epi f. (8)

It means that

xk
σ→ x0 in X, yk

τ→ y0 in Y ; (9)

f (xk) ≤Λ yk ∀k ∈ N; (10)

f (x0) �Λ y0. (11)

By (9), the sequence {yk}k∈N is bounded in Y . Hence there exists a constant
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C > 0 such that

sup
k∈N

∥yk∥Y ≤ C. (12)

Since the mapping f is locally bounded below in the sense of De�nition 3.2, the
condition (10) implies the existence of an element b ∈ Y and a set N ∈ N∞ such
that

b ≤Λ f (xk) ∀k ∈ N. (13)

Then, inequalities (10), (12), (13), and the Λ-monotonicity of ∥ · ∥ in Y imply that
the sequence {f(xk)}k∈N is bounded in Y . Hence, by Banach-Alaoglu Theorem,

we can extract a subsequence {xk}k∈N1
with N1 ∈ N ♯

∞ such that f(xk)
τ,N1−→ f∗ in

Y . As a result, passing to the limit in (10) as N1 ∋ k → ∞, we obtain f∗ ≤Λ y0.
Combining this with (11), we come to the conclusion f (x0) �Λ f∗. Since f∗ ∈
Lµ (f, x0), it follows that f (x0) ̸= infΛ Lµ (f, x0), which contradicts with the epi-
lower semicontinuity of f at the point x0. This completes the proof. �

The hypotheses that the mapping f : X → Y • must be locally bounded below on
X and epi-l.s.c. on X are essential in Theorem 3.5, as the following example shows.

Example 3.6 Let X = R, Y = ℓ2, and let Λ be the so-called natural ordering
cone in ℓ2 which is de�ned by Λ = {(y1, y2, . . . , yk, . . .) ∈ ℓ2 | yk ≥ 0 ∀ k ∈ N}. Let
τ be the weak topology of ℓ2. We de�ne a vector-valued mapping f : R → ℓ2 as
follows:

f(x) =


(1, 0, 0, . . .) , x ̸= 1

k ,

(0, 0, . . . ,−k︸ ︷︷ ︸
k

, 0, . . .), x = 1
k . (14)

It easily follows from (14) that the mapping f is not locally bounded below at x = 0
with respect to the cone Λ. To begin with, we show that f is epi-l.s.c. on R. Indeed,
let x0 be an arbitrary element of R such that x0 does not belong to the sequence{
1
k

}
k∈N and x0 ̸= 0. Then there exist a constant C > 0 and a neighborhood V(x0)

of x0 such that f(x) = C for all x ∈ V(x0). Hence,

infΛ Lµ (f, x0) = infΛ {f (x0)} = f (x0) ,

that is, the mapping f is epi-l.s.c. at x0.
Further, we suppose that a given element x0 admits a representation x0 = k−1

for some k ∈ N. Then

infΛ Lµ (f, x0) = infΛ{(1, 0, . . .) , (0, . . . ,−k, 0, . . .)} = (0, . . . ,−k, 0, . . .) = f (x0) .

As a result, f is also epi-l.s.c. at x0.
It remains to consider the case when x0 = 0. Since {(0, 0, . . . ,−k, 0, . . .)}k∈N ⊂ ℓ2

is not a τ -convergent sequence in ℓ2, it follows that Lµ (f, 0) is a singleton set.
Namely, Lµ (f, 0) = {f(0)}. Hence, infΛ Lµ (f, 0) = f(0). This proves that the
mapping f is epi-l.s.c. on the entire set R.
We are now able to show that the epigraph of the mapping (14) is not a sequen-

tially µ-closed subset of R×ℓ2. In order to do it, we consider the following sequence{(
k−1, 0ℓ2

)}
k∈N ⊂ R × ℓ2. Since 0l2 ≥Λ f

(
k−1

)
= (0, 0, . . . ,−k, 0, . . .), it follows
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that each element of this sequence belongs to the epi f . However, it can be easily

checked that
(
k−1, 0ℓ2

) µ→ (0, 0l2) in R×ℓ2 as k → ∞, where (0, 0ℓ2) ̸∈ epi f . Thus,
(14) gives an example of epi-l.s.c. mapping on R for which its epigraph is not a
sequentially µ-closed set.

Remark 3 : Finally we note that the epi-l.s.c. property of a mapping f : X → Y •

does not imply its sequential lower semicontinuity, in general. At the same time,
in the case when the objective space Y is endowed with the weak-∗ topology, the
converse statement is valid (see [11]).

4. Setting of a Vector Optimization Problem and Existence Theorem

Let Xad be a non-empty σ-closed subset of a Banach space X. Let f : Xad → Y
be a given epi-l.s.c. mapping. The vector optimization problem we are going to
consider in this section can be stated as follows

Find xeff ∈ Xad such that f(xeff ) ∈ InfΛ,τx∈Xad
f(x), (15)

where the operator InfΛ,τx∈Xad
is de�ned in De�nition 2.2. Since the choice of the

τ -topology on the objective space Y is essential, we will associate the optimization
problem (15) with the quaternary ⟨Xad, f,Λ, τ⟩.
Further we make use of the following concept [7, 8, 16].

Definition 4.1: An element xeff ∈ Xad is said to be a (Λ, τ)-e�cient solution

to the problem (15) if
({

f(xeff )
}
− Λ

)
∩ clτ

(
f(Xad)

)
=

{
f(xeff )

}
. In other

words, xeff ∈ Xad is (Λ, τ)-e�cient solution to the problem (15) if xeff realizes the
(Λ, τ)-in�mum of the mapping f : Xad → Y .

We denote by Effτ (Xad; f ; Λ) the set of all (Λ, τ)-e�cient solutions to the vector
problem (15). Note that there are other notions of optimality for the problem (15)
which are rather customary in vector optimization theory [19]. In what follows, we
prescribe some additional properties to the ordering cone Λ.

Definition 4.2: Let (Y, τ) be a real topological linear space with an ordering
cone Λ. The cone Λ is called Daniell, if every decreasing lower bounded net (i.e.
i ≤ j =⇒ yj ≤Λ yi) τ -converges to its (Λ, τ)-in�mum.

A typical example of Daniell cone with respect to the weak topology of Lp(Ω)
(1 < p < +∞) is the natural ordering cone in Lp(Ω). A condition ensuring the
Daniall property is given by the next lemma [20].

Lemma 4.3: Let (Y, τ) be a real topological linear space with an ordering cone Λ.
If Y has compact intervals [−z, z] and Λ is τ -closed and pointed, then Λ is Daniell.

Definition 4.4: We say that a sequence {xk}∞k=1 ⊂ Xad is minimizing to the

vector optimization problem ⟨Xad, f,Λ, τ⟩, if f(xk)
τ→ ξ in Y , where ξ is an element

of InfΛ,τx∈Xad
f(x).

We are now in a position to give the main existence result concerning the vector
optimization problem (15) (see [7]).

Theorem 4.5 : Let (X,σ) and (Y, τ) be two real topological linear spaces, and
let Y be partially ordered with the τ -closed pointed Daniell cone Λ. Let Xad be a
non-empty sequentially σ-compact subset of X and let f : Xad → Y be a given
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epi-l.s.c. mapping. Then the vector optimization problem ⟨Xad, f,Λ, τ⟩ has a non-
empty set of (Λ, τ)-e�cient solutions and is well-posed in the Tikhonov sense with
respect to the σ-topology of X, i.e. every minimizing sequence {xk}∞k=1 ⊂ Xad has
a subsequence σ-converging to some element of Effτ (Xad; f ; Λ).

5. On Pascoletti-Sera�ni Nonlinear Scalarization of Vector Optimization

Problems

We assume that X is re�exive and the objective space Y is dual to some separable
Banach space V (that is Y = V ∗). As usual we suppose that these spaces are
endowed with some topologies σ = σ(X) and τ = τ(Y ), respectively. By default
σ is always associated with the weak topology of X, whereas τ is associated with
the weak-∗ topology of Y . Suppose that the space V is partially ordered with a
nontrivial pointed ordering cone K ⊂ V with non-empty algebraic interior cor (K)

for which Λ is the dual cone, that is, Λ := K∗ :=
{
y ∈ Y : ⟨y, λ⟩Y ;V ≥ 0 ∀λ ∈ K

}
.

As usual we suppose that Y is partially ordered with a pointed convex cone Λ = K∗.
As was shown in [7, 16], many open questions concerning the scalarization of

vector optimization problem (15) arise even for the simplest situation. Indeed, in
spite of the fact that the scalarization in the form

fλ(x) = ⟨f(x), λ⟩Y ;V → inf subject to x ∈ Xad ⊂ X, (16)

where λ is an element of the cone K, takes rather simple form, it possesses some
disadvantages. Namely, the main property of the problem (16) can be characterized
as follows (see [7]).

Theorem 5.1 : Let X be a re�exive Banach space, let V be a separable Banach
space, and let Y = V ∗ be endowed with the weak-∗ topology τ and partially ordered
with a pointed Daniell cone Λ = K∗, where K is a weakly closed ordering cone
in V . Let also Xad be a non-empty bounded weakly closed subset of X, and let
f : Xad → Y be a epi-l.s.c. mapping. Then

Argmin
x∈Xad

⟨f(x), λ⟩Y ;V ∩ Effτ (Xad; f ; Λ) ̸= ∅ ∀λ ∈ Kσ
f \ 0V , (17)

where Kσ
f is the co-called cone of σ-semicontinuity for the mapping f , i.e.

Kσ
f := {λ ∈ K : fλ is proper and lower σ-semicontinuous on Xad} . (18)

Since the inclusion Argmin
x∈Xad

⟨f(x), λ⟩Y ;V ⊆ Effτ (Xad; f ; Λ) ∀λ ∈ Kσ
f \ 0V is not

generally valid, it means that the scalar problem (16) may produce the appearance
of the so-called pseudo-solutions or extra solutions to the original one. On the
other hand, one of the most important question is that an �even� choice of elements
λ ∈ Kσ

f \ 0V does not guarantee an �even� distribution of the solutions x∗ ∈ Xad

to the corresponding vector optimization problem (15) on the set Effτ (Xad; f ; Λ).
So, we cannot ensure that each solution x∗ ∈ Effτ (Xad; f ; Λ) can be attained by
solutions to the scalar problem (16). To our best knowledge, no answers to these
questions have been found in the case when f : Xad → Y is a epi-l.s.c. mapping
and Λ is a non-solid cone in Y (i.e., intτΛ = ∅).
In view of this, our main goal in this section is to consider another type of

scalarization for vector optimization problems (15) with epi-l.s.c. mappings f :
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Xad → Y and possibly empty topological interior of the ordering cone Λ in Y ,
which inherits the ideas of the Pascoletti-Sera�ni approach [17]. We recall that the
epi-lower semicontinuity property of the objective mapping f should be considered
as the weakened property of lower semicontinuity for vector-valued mappings in
Banach spaces [11]. Hereinafter, we assume that f : Xad → Y is locally bounded
below with respect to the cone Λ.
Let {ηk}∞k=1 be a Λ-decreasing sequence in Y , i.e. ηk+1 ≤Λ ηk for all k ∈ N. We

associate the original vector optimization problem (15) with the following collection
of sets: Θηk

= {x ∈ Xad : f(x) ≤Λ ηk} ∀ k ∈ N. It is clear that the sequence
{Θηk

}∞k=1 is monotone: Θηk+1
⊆ Θηk

∀ k ∈ N . Since the epigraph of f : Xad → Y is
sequentially µ-closed (see [11, 12]), the sets Θηk

are σ-closed for every k ∈ N.
Our next observation deals with the limiting properties of the sequence of sets

{Θηk
}∞k=1. To do so, we recall the sequential version of the set convergence in the

sense of Kuratowski.

Definition 5.2: The sequential K-lower and K-upper limits of the sequence
{Θηk

}∞k=1 are de�ned as

Ks− lim inf
k→∞

Θηk
=

{
x ∈ X : ∃xk

σ→ x, ∃ k0 ∈ N, ∀ k ≥ k0 : xk ∈ Θηk

}
,

Ks− lim sup
k→∞

Θηk
=

{
x ∈ X : ∃nk → +∞, ∃xk → x, ∀ k ∈ N : xk ∈ Θηnk

}
,

respectively. Now, we say that the sequence {Θηk
}∞k=1 Ks-converges to Θ if

Ks− lim inf
k→∞

Θηk
= Ks− lim sup

k→∞
Θηk

= Θ.

Proposition 5.3: Let {ηk}∞k=1 ⊂ Y be a Λ-decreasing sequence such that ηk
τ→ η∗

in Y . Assume that K is a reproducing cone in V ,

{x ∈ Xad : f(x) ≤Λ η∗} ̸= ∅, (19)

and Xad is a nonempty sequentially σ-closed subset of X. Then Θη∗ is the sequential
K-limit of the sequence {Θηk

}∞k=1 as k → ∞.

Proof : In view of condition (19) and monotonicity of the sequence {ηk}∞k=1 ⊂
Y , we have {x ∈ Xad : f(x) ≤Λ η∗} ⊆ {x ∈ Xad : f(x) ≤Λ ηk} ⊆ Θηk

∀ k ∈ N.
Hence, Θηk

̸= ∅ for all k ∈ N. Let {xk}∞k=1 and {nk}∞k=1 ⊂ R be any sequences such
that xk ∈ Θηnk

for all k ∈ N, nk → ∞ as k → ∞, and the sequence {xk}∞k=1 σ-
converges to some element x∗ ∈ X. Then, the condition of epi-lower semicontinuity
of f implies that f(xk) ≤Λ ηnk

for all k ∈ N.
Further we note that the coneK is reproducing in V with nonempty quasi-interior

K♯. Then, following Peressini [18] and Boenwein [20], we have that in the dual space
Y = V ∗ the ordering cone Λ = K∗ is normal with respect to the norm topology
of Y , that is, 0 ≤Λ y <Λ z =⇒ ∥y∥Y < ∥z∥Y . Since f(xk) ≤Λ ηnk

for all k ∈ N

and the sequence {ηnk
}∞k=1 monotonically τ -converges to η∗ as k tends to ∞ and,

hence, {ηnk
}∞k=1 is bounded, it follows that f(xk) ≤Λ ηn1

∀ k ∈ N. Therefore, if the
sequence {f(xk)}∞k=1 is bounded from below, then normality property implies its
boundedness in Y . Hence, by Banach-Alaoglu theorem, we may assume that the
sequence {f(xk)}∞k=1 is τ -convergent. Otherwise, if infΛ {f(xk)}∞k=1 = −∞Λ then
the inequality f(x∗) ≤Λ η∗ is obvious.
So, it has a sense to consider only the �rst case. Let ξ ∈ Y be the τ -limit of the

sequence {f(xk)}∞k=1. Since f(xk) ≤Λ ηnk
for all k ∈ N, ηnk

↘ η∗, and f(xk)
τ→ ξ,
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it follows that ξ ≤Λ η∗. Besides, taking into account that fact that ξ ∈ Lµ(f, x∗)

and f(x∗)
by (4)
≤Λ z ∀ z ∈ Lµ(f, x∗), we conclude: f(x∗) ≤Λ η∗. Since Xad is a τ -

closed subset of X, it follows that x∗ ∈ Xad. Combining this fact with inequality
f(x∗) ≤Λ η∗, we obtain x∗ ∈ Θη∗ . Hence, Ks− lim supk→∞Θηk

⊆ Θη∗ by De�nition
5.2.
To conclude the proof, it remains to establish the inclusion Θη∗ ⊆

Ks− lim infk→∞Θηk
. To do so, we �x an arbitrary element x∗ ∈ Θη∗ . Due to the

assumption (19), we have f(x∗) ≤Λ η∗. Since the sequence {ηk}∞k=1 ⊂ Y is Λ-
decreasing, it follows that f(x∗) ≤Λ η∗ ≤Λ ηnk

∀ k ∈ N. Thus, x∗ ∈ Θηk
for all

k ∈ N and the desired inclusion immediately follows from De�nition 5.2. The proof
is complete. �

Before proceeding further, we note that in many applications it has a sense to
weaken the requirement on e�cient solutions to the vector optimization problem
⟨Xad, f,Λ, τ⟩. In particular, we may let the objective mapping to attain its e�cient
in�mum on the setXad with some error. On the other hand, the set of (Λ, τ)-e�cient
solutions to such problem can possibly be empty, i.e., the e�cient in�mum of the
objective mapping is unattainable on the given set Xad. Nevertheless, the absence
of its in�mum does not mean that the vector optimization problem makes no sense,
since its e�cient in�mum exists and hence can be approached with some accuracy.
In view of this, it is reasonable to weaken the requirements on the solutions to the
vector optimization problem ⟨Xad, f,Λ, τ⟩ as follows.

Definition 5.4: We say that an element x∗ ∈ Xad is the (σ, τ)-generalized solu-
tion to optimization problem (15), if there exist a sequence {xk}∞k=1 ⊂ Xad and an

element ξ ∈ InfΛ,τx∈Xad
f(x) such that xk

σ
⇀ x∗ in X and f(xk)

τ→ ξ in Y .

We denote by GenEffσ,τ (Xad; f ; Λ) the set of all (σ, τ)-generalized solutions to
the problem ⟨Xad, f,Λ, τ⟩. It is clear that

Effτ (Xad; f ; Λ) ⊆ GenEffσ,τ (Xad; f ; Λ). (20)

By sc−σ fλ : Xad → R we denote the lower σ-semicontinuous envelope of the func-
tional fλ(x) = ⟨f(x), λ⟩Y ;V with some λ ∈ K, that is, sc−σ fλ is the greatest lower
σ-semicontinuous functional majorized by fλ on Xad.

Theorem 5.5 : [7] Let X be a re�exive Banach space, σ be the weak topology on
X, V be a separable Banach space, and the Banach space Y = V ∗ be endowed with
the weak-∗ topology τ and partially ordered with a pointed cone Λ = K∗, where K is
a convex pointed cone in V with non-empty algebraic interior cor (K). Let also Xad

be a non-empty sequential σ-compact subset of X, and let f : Xad → Y be a given
mapping (not necessary epi-l.s.c. on Xad). Then the following inclusion is valid:∪

λ∈K♯

Argmin
x∈Xad

sc−σ fλ(x) ⊆ GenEffσ,τ (Xad; f ; Λ). (21)

Theorem 5.6 : Let Xad be a non-empty sequential σ-compact subset of X, let
f : Xad → Y be a given epi-lower semicontinuous mapping, let {ηk}∞k=1 be a Λ-

monotonically decreasing sequence in Y such that ηk
τ→ ξ ∈ InfΛ,τx∈Xad

f(x), and let
K be a reproducing cone in V . Then the sequence {Θηk

}∞k=1 Ks-converges to Θξ

and

Θξ ⊆ GenEffσ,τ (Xad; f ; Λ). (22)
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Proof : To begin with, we show that the set {x ∈ Xad : f(x) ≤Λ ξ} is nonempty
due to the epi-lower semicontinuity of f . Indeed, taking into account the initial
assumptions (ηk

τ→ ξ ∈ InfΛ,τx∈Xad
f(x)), we have

{x ∈ Xad : f(x) ≤Λ ηk} ̸= ∅ ∀ k ∈ N.

Hence, there exists a sequence {xk}∞k=1 such that xk ∈ Θηk
for all k ∈ N. Since

Xad is the sequential σ-compact set, it follows that there is an element x∗ ∈ Xad

such that, within a subsequence, we have: Θηk
∋ xk

σ→ x∗ as k → ∞. On the
other hand, we have an obvious inequality: ξ ≤Λ f(xk) ≤Λ ηk ≤Λ η1 ∀ k ∈ N.
Applying arguments similar to those in the proof of Proposition 5.3, we can assume
that f(xk)

τ→ ξ. Since ξ ∈ infΛLµ(f, x∗), by epi-lower semicontinuity property of
f : Xad → Y , we conclude: x∗ ∈ {x ∈ Xad : f(x) ≤Λ ξ} and

x∗ ∈ GenEffσ,τ (Xad; f ; Λ) by De�nition 5.4, (23)

i.e., the set {x ∈ Xad : f(x) ≤Λ ξ} is nonempty. Hence, all preconditions of Propo-
sition 5.3 hold true. Thus, the sequence {Θηk

}∞k=1 Ks-converges to Θξ as k → ∞.
It remains to establish the inclusion (22). To do so, we �x an arbitrary element

z ∈ Θξ. If Θξ is a singleton then the required conclusion immediately follows from
(23). So, we assume that z ̸= x∗. By De�nition 5.2, there exists a sequence {zk}∞k=1

such that zk
σ→ z in X and zk ∈ Θηk

for all k ∈ N. Since ηk ↘ ξ and ξ ∈
InfΛ,τx∈Xad

f(x) it follows that

ηk − Λ
Ks→ ξ − Λ and (ξ − Λ) ∩ InfΛ,τx∈Xad

f(x) = ξ by De�nition 2.2.

Hence, the sequence {f(xk)}∞k=1 satis�es conditions ξ ≤Λ f(zk) ≤Λ ηk ∀ k ∈ N.
Therefore, by normality property of Λ and Banach-Alaogly theorem, we have
f(zk)

τ→ ξ. Thus, z ∈ GenEffσ,τ (Xad; f ; Λ) by De�nition 5.4. The proof is com-
plete. �

Remark 1 : In order to construct a Λ-monotone sequence {ηk}∞k=1 (see Theorem
5.6), we can apply the following arguments. Let η1 be any element of Y such that

η1 >Λ ξ, where ξ is a given element of InfΛ,τx∈Xad
f(x). Let ζ = η1 − ξ be a direction

in Y . Then it is reasonably to de�ne {ηk}∞k=1 following the rule: ηk := ξ + k−1ζ
∀ k ∈ N. Note that, in some sense such choice of elements {ηk}∞k=1 comes from the
Pascoletti-Sera�ni approach [17] (see also some generalization of that approach in
Gerth and Weidner [21]).

Let η ∈ Y and ζ ∈ Y be given elements. Our next intension is to consider the
following parametrized scalar optimization problem

inf
(x,γ)∈Ωη,ζ

Φ(x, γ), (24)

where Φ(x, γ) = γ and the set Ωη,ζ ⊂ X ×R is de�ned as follows

Ωη,ζ = {(x, γ) ∈ Xad ×R | f(x) ≤Λ η + γζ } . (25)

In order to give a sense to this problem, we note that the elements η ∈ Y and
ζ ∈ Y in (25) should be related by the following conditions:

(A1) There exists at least one element x ∈ Xad such that f(x) ≤Λ η + ζ.
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The following result inherits the main ideas of the Pascoletti-Sera�ni approach
and shows that it can be extended to the case of vector optimization problems
in Banach spaces with epi-lower semicontinuous objective mappings and non-solid
ordering cone.

Theorem 5.7 : Let Xad be a non-empty sequential σ-compact subset of X, let
f : Xad → Y be a locally bounded from below and epi-lower semicontinuous objective
mapping, and let K be a reproducing cone in V . Then

(i) If x0 ∈ Effτ (Xad; f ; Λ) then there exist elements η0 ∈ Y and ζ0 ∈ Y such
that the pair (x0, 0) is optimal for the scalar problem (24)�(25), moreover,

(x0, 0) ∈ Ωη0,ζ0 and inf
(x,γ)∈Ωη0,ζ0

Φ(x, γ) = 0. (26)

(ii) If (x0, γ0) ∈ X × R is a minimizer to the scalar problem (24)�(25) with

some η ∈ Y and ζ ∈ Y such that η + γ0ζ ∈ InfΛ,τx∈Xad
f(x), then

x0 ∈ GenEffσ,τ (Xad; f ; Λ). (27)

(iii) If (x0, γ0) ∈ X × R is a unique minimizer to the scalar problem (24)�(25)
with some η ∈ Y and ζ ∈ Y , then

x0 ∈ GenEffσ,τ (Xad; f ; Λ). (28)

(iv) If elements η ∈ Y and ζ ∈ Y are such that Ωη,ζ ̸= ∅ then the scalar problem
(24)�(25) has a nonempty set of minimizers.

Proof : Part (i). Let x0 ∈ Xad be a (Λ, τ)-e�cient solution to the vector optimiza-

tion problem (15). Then f(x0) ∈ InfΛ,τx∈Xad
f(x). We set

η0 = f(x0) and ζ0 is an arbitrary nontrivial element of Λ. (29)

Since f(x0) = η0 + 0 ζ0, it follows that the pair (x0, 0) is admissible to the scalar
problem (24)�(25). In order to prove the second part of (26), we assume, by con-
tradiction, that (x0, 0) ̸∈ Argmin

(x,γ)∈Ωη0,ζ0

Φ(x, γ). Then there is a pair (x̂, γ̂) ∈ Ωη0,ζ0

with properties: γ̂ = Φ(x̂, γ̂) < Φ(x0, 0) = 0. Using this relation and the fact that

(x̂, γ̂) ∈ Ωη0,ζ0 , we obtain f(x̂) ≤Λ η0 + γ̂ ζ0 < η0
by (29)
= f(x0), and we come into

con�ict with the condition x0 ∈ Effτ (Xad; f ; Λ). This proves Part (i).
Part (ii) Let (x0, γ0) ∈ X × R be a minimizer for the scalar problem (24)�(25).

Let {γk}∞k=1 ⊂ R be any monotonically decreasing sequence of numbers such that
γk → γ0 as k tends to ∞. We set ηk = η + γkζ for every k ∈ N. It is clear that
{ηk}∞k=1 is the Λ-decreasing sequence in Y for which η∗ = η + γ0ζ is its τ -limit.
Since (x0, γ0) ∈ Ωη,ζ it follows that

x0
by (25)
∈ Θη∗ , and, hence, x0

by monotonicity of ηk

∈ Θηk
∀ k ∈ N.

Therefore, the condition η∗ = η + γ0ζ ∈ InfΛ,τx∈Xad
f(x) and Theorem 5.6 imply:

Θηk

Ks→ Θη∗ and, hence, x0 ∈ GenEffσ,τ (Xad; f ; Λ).
Part (iii) Let (x0, γ0) ∈ X × R be a unique minimizer for the scalar prob-

lem (24)�(25). In this case we cannot apply Theorem 5.6 because the element
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η + γ0ζ does not belong in general to the set InfΛ,τx∈Xad
f(x). At the same time,

we have: f(x0) = η + γ0 ζ. Let {(xk, γk)}∞k=1 be a minimizing sequence to the

problem (24)�(25), i.e., xk
σ→ x0 and γk → γ0. We always can make this choice

such that the sequence{γk}∞k=1 is monotonically decreasing. Then, because of the
property (A1), the sequence of images {f(xk)}∞k=1 is bounded in Y (see argu-
ments in the proof of Theorem 5.6 ). Hence, by Banach-Alaoglu theorem there

exists an element ξ ∈ Lµ(f, x0) such that f(xk)
τ→ ξ as k → ∞. Let us as-

sume by contradiction that ξ ̸∈ InfΛ,τx∈Xad
f(x). Then there exists an element

x̂ ∈ Xad ensuring the inequality f(x̂) <Λ ξ. Combining this fact with the prop-
erty f(x0) ≤Λ z for all z ∈ Lµ(f, x0), we arrive at the conclusion: f(x̂) ≤Λ f(x0).

At the same time we have f(x0) = η + γ0 ζ and η + γ0ζ ̸∈ InfΛ,τx∈Xad
f(x). As

a result, we get:
(
f(x0)− Λ

)
∩ f(Xad) = ∅. Comparing this condition with rela-

tion
(
f(x0)− Λ

)
∩ f(Xad) = ∅, we conclude f(x̂) = f(x0). This, however, contra-

dicts the uniqueness of the solution (x0, γ0) of the scalar problem (24)�(25). Thus,

ξ ∈ InfΛ,τx∈Xad
f(x), and hence, x0 ∈ GenEffσ,τ (Xad; f ; Λ).

For the proof of Part (iv) it is su�cient to observe that the set Ωη,ζ is a non-
empty and sequential compact subset of X × R with respect to the product of
σ-topology and the topology of pointwise convergence in R (see property (A1)).
Hence, in view of the linear structure of the objective function Φ : Ωη,ζ ×R → R,
the direct method in the Calculus of Variations immediately implies the required
conclusion. The proof is complete. �

6. On Quadratic Regularization of Parametrized Problem (24)�(25)

Our main interest in this section is to reduce the parametrized problem (24)�(25)
and show that the quadratic regularization approach can be applied in this case.
Let η ∈ Y and ζ ∈ Y be given elements related by condition (A1). We assume

that there exist a real Banach space Z and an operator P⃗ : Z → X × R2 with
decomposition P⃗ (z) = (P1(z), P2(z), P3(z)), where P1 : Z → X, P2 : Z → R, and
P3 : Z → R are such that

(B1) The mappings P1 : Z 7→ X and P2 : Z → R are surjective in the following
sense: for every (x, γ) ∈ X × R and every c > 0 there exists an element
z ∈ Z satisfying: P1(z) = x, P2(z) = γ, and ∥z∥Z ≥ c.

(B2) P3(z) = ∥z∥2Z for all z ∈ Z.

Remark 1 : In �nite dimensional case ( X = RN ), we suggest the following

structure for the space Z and transformation P⃗ : Z → X ×R2 (see [22])

Z = RN+2,

P⃗ (z) =

P1(z)
P2(z)
P3(z)

 =


1 0 · · · 0 0
0 1 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 1 0
z1 z2 · · · zN+1 zN+2




z1
z2
· · ·

zN+1

zN+2

 .

Further, we consider the following family of parametrized scalar optimization
problems

F (z) = ∥z∥2Z −→ inf (30)
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subjected to the constraints z ∈ Ξη,ζ , where

Ξη,ζ =
{
z ∈ Z

∣∣P1(z) ∈ Xad , f(P1(z)) ≤Λ η + P2(z)ζ, P2(z) + s ≤ ∥z∥2Z ,
}

(31)

and s is a positive constant.

Theorem 6.1 : Let Xad be a non-empty sequential σ-compact subset of X and let
f : Xad → Y be a locally bounded from below and epi-lower semicontinuous on Xad

objective mapping, and let K be a reproducing cone in V . Let also Z be a re�exive
Banach space endowed with the weak topology and let P1 and P2 be continuous
mappings in following sense

P1(zk)
σ→ P1(z) in X and P2(zk)→P2(z) in R (32)

provided zk → z weakly in Z. Assume that the elements η ∈ Y and ζ ∈ Y are
such that the property (A1) and Hypotheses (B1)�(B2) are valid. Then following
assertions hold true:

(a) There exists a constant s > 0 such that if z0 ∈ Ξη,ζ is a unique minimizer
for inf

z∈Ξη,ζ

F (z) then x0 := P1(z
0) ∈ GenEffσ,τ (Xad; f ; Λ).

(b) If x0 ∈ Effτ (Xad; f ; Λ) then there exist elements η0 ∈ Y , ζ0 ∈ Y , z0 ∈ Z,
and s > 0 such that x0 = P1(z

0), z0 ∈ Ξη0,ζ0 , and z0 is a minimizer for the
regularized problem (30)�(31) under η = η0 and ζ = ζ0.

Proof : To begin with, we note that condition (A1) ensures the ful�lment of the
inequality inf(x,γ)∈Ωη,ζ

Φ(x, γ) > −∞. Since Xad is a σ-compact subset of X and,
hence, Xad is bounded, the choice of a positive value s in (31)3 can be realized as

s > − inf
(x,γ)∈Ωη,ζ

Φ(x, γ) + sup
z∈Z

inf
P1(z)∈Xad

∥z∥2Z .

Let z0 ∈ Ξη,ζ be a minimizer to the regularized problem (30)�(31). We use the
following transformation

x = P1(z), γ = P2(z) κ = ∥z∥2Z := P3(z) ∀ z ∈ Ξλ,η,ζ (33)

As a result, the description (31) leads us to the implication: �If z ∈ Ξη,ζ , then
(x, γ) := (P1(z), P2(z)) ∈ Ωη,ζ . � So, the pair (x

0, γ0) :=
(
P1(z

0), P2(z
0)
)
is admis-

sible for the scalar optimization problem (24)�(25). The converse implication

If (x, γ) ∈ Ωη,ζ then ∃z ∈ Z such that x = P1(z), γ = P2(z), z ∈ Ξη,ζ

holds true due to Hypothesis (B1). Hence, the images of functions Φ : Ωη,ζ → R

and P2 : Ξη,ζ → R coincide. Therefore,

inf
(x,γ)∈Ωη,ζ

Φ(x, γ) ≤ P2(z) ∀ z ∈ Ξλ,η,ζ . (34)

Moreover, in view of the continuity property (32), we have an obvious deduction:
If z0 ∈ Ξη,ζ is a minimizer to the regularized problem (30)�(31), then

P2(z
0) + s

by (31)3
= ∥z0∥2Z

by (34)
= inf

(x,γ)∈Ωη,ζ

Φ(x, γ) + s.
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Combining these observations, we arrive at the conclusion:

inf
(x,γ)∈Ωλ,η,ζ

Φλ,η,ζ(x, γ) = Φλ,η,ζ(x
0, γ0) = ∥z0∥2Z − s,

i.e., the pair (x0, γ0) :=
(
P1(z

0), P2(z
0)
)
is optimal for the scalar optimization

problem (24)�(25). As a result, it remains to apply Theorem 5.7, item (iii). Thus,
assertion (a) is valid.
In order to prove assertion (b) of this theorem, we note that if x0 is a (Λ, τ)-

e�cient solution to the original vector optimization problem (15), then Theorem 5.7
ensures the existence of elements η0 ∈ Y and ζ0 ∈ Y such that the pair (x0, 0) is
optimal for the scalar problem (24)�(25) and inf(x,γ)∈Ωη0,ζ0

Φ(x, γ) = 0. Having put

s > supz∈Z infP1(z)∈Xad
∥z∥2Z in (31), we indicate the element z0 ∈ Z as follows

P1(z
0) = x0, P2(z

0) = 0, and s = ∥z0∥2Z . Note that the existence of such elements
comes from Hypothesis (B1). Then direct calculations show that z0 ∈ Ξη0,ζ0 and

0 = inf
(x,γ)∈Ωη0,ζ0

Φ(x, γ) = Φ(x0, 0) = P2(z
0) = ∥z0∥2Z − s.

Hence, z0 is a minimizer for the problem infz∈Ξη0,ζ0
F (z). This concludes the proof.

�
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