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Abstract. We consider optimal control problems for linear degenerate elliptic equations with
mixed boundary conditions. In particular, we take the matrix-valued coefficients A(x) of such systems

as controls in L1(Ω;R
N(N+1)

2 ). One of the important features of the admissible controls is the fact
that eigenvalues of the coefficient matrices may vanish in Ω. Equations of this type may exhibit
non-uniqueness of weak solutions. Using the concept of convergence in variable spaces and following
the direct method in the Calculus of variations, we establish the solvability of this optimal control
problem in the class of weak admissible solutions.

Key words. Degenerate elliptic equations, control in coefficients, weighted Sobolev spaces,
Lavrentieff phenomenon, direct method in the Calculus of Variations.

1. Introduction. Material optimization is an emerging field in the engineer-
ing context of design of advanced materials. The notions of advanced materials and
meta-materials have recently evolved where desired, possibly counterintuitive, ma-
terial properties are realized via systematic model-based optimization of material
parameters. Often, such an inverse engineering approach leads to micro-structures,
where mathematical optimization indicates singular behavior for the material param-
eters. This is particularly true for optical meta-materials in the context of cloaking.
Following the exploration of electromagnetic cloaking on the base physics by Pendry
[22] and Leonhard [23], a subject that has become a major branch of modern physics,
the mathematical theory of cloaking has been established by Uhlmann, Lassas and
coworkers (see the review article [26] and e.g. [25, 24]). The references given are by
no means complete and rather exemplary in nature. The notion of transformational
optics has been developed that allows, based on differential geometry, to construct
Riemann metrics with special features, such that objects are “hidden”. This is a
question typically posed in the context of inverse problems: given a set of data on
the boundary, as inputs and measured outputs, is it possible to reconstruct “objects”
represented by, say, different material properties? If we can provide a situation, rep-
resented by a Riemann metric, where this question can be answered in the negative
sense, we deal with non-identifiable objects. In the language of electro-magneto-
dynamics, this means that objects can then be invisible. The studies of Uhlmann
et.al.[24] strongly indicate that the corresponding Riemann metrics which are repre-
sented as coefficient matrices in elliptic systems, exhibit singular behavior along the
object to be cloaked. Indeed, eigenvalues of that matrix may vanish or tend to infinity.
Several other physical phenomena related to equilibrium of continuous media modeled
by elliptic problems concern media which are “perfect” insulators or “perfect” con-
ductors (see [11]) necessitate eigenvalues of the matrix A either to vanish somewhere
or to be unbounded. These circumstances appearing in modern technologies are the
major motivation for the paper.

The aim of this work is to study the existence of optimal controls in the matrix-
valued coefficients associated with a linear elliptic equation and mixed boundary con-
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dition. The controls are taken as the matrix of the coefficients in the main part of
the elliptic operator. The most important feature of such controls is the fact that
eigenvalues of the matrix A may either vanish on subsets with zero Lebesgue measure
or be unbounded. In this case the precise answer for the question of existence or
non-existence of optimal solutions heavily depends on the class of admissible controls
chosen. The main questions are: what is the right setting of the optimal control
problem in terms of the coefficient matrices? Her we will show that a certain class
of L1-controls in the matrix coefficients is appropriate in order to admit degeneracy
at least on thin sets. In connection with this question we ask for the right class of
admissible solutions to the above problem. Using the direct method in the Calculus
of variations, we discuss the solvability of this optimal control problem in a class of
weak admissible solutions. It should be emphasized that in contrast to [8], we do
not make use of any relaxations of the degeneration for the original optimal control
problem.

To be more specific, in this paper we deal with an optimal control problem in the
coefficient-matrix for boundary value problems of the form

−div
(
A(x)∇y

)
= f in Ω,

y = 0 on ΓD,
∂y
∂νA

= g on ΓN ,
(1.1)

where f ∈ L2(Ω) and g ∈ L2(ΓN ) are given functions, the boundary of Ω consists of
two disjoint parts ∂Ω = ΓD ∪ ΓN , and A is a measurable positive-semidefinite square
symmetric matrix on a bounded open domain Ω in RN .

Even though numerous articles (see, for instance, [2, 7, 9, 12, 20, 21, 29] and refer-
ences therein) are devoted to variational and non variational approaches to problems
related to (1.1), only few deal with optimal control problems for degenerate partial dif-
ferential equations (see for example [4, 5, 6, 15, 16]). This can be explained by several
reasons. Firstly, boundary value problem (1.1) for locally integrable matrix-valued
function A may exhibit non-uniqueness of weak solutions, as well as other surprising
consequences. So, in general, the mapping A 7→ y(A) can be multivalued. One cannot
expect that for every admissible data f ∈ L2(Ω), g ∈ L2(ΓN ), and A ∈ L1(Ω;RN×N ),
problem (1.1) admits a weak solution. Besides, for every admissible control function
A, the weak solutions to the boundary value problem (1.1) belong to the correspond-
ing weighted Sobolev space W 1,2(Ω, A dx). In addition, even if the elliptic equation
is non-degenerate, i.e. admissible controls A(x) are such that

β‖ξ‖2RN ≥ ξ ·A(x)ξ ≥ α‖ξ‖2RN ξ ∈ RN

with α > 0, the optimal control problems in the coefficients may not have any solution
(see for instance [19]).

In spite of the fact that the original boundary value problem is ill-posed in general,
we show that the corresponding extremal problem has a practical sense and is indeed
well-posed. This problem is, thus, yet another example for the difference between well-
posedness for optimal control problems for systems with distributed parameters and
partial differential equations. See the monograph by the authors [17] for a discussion
and further examples.

The proof of existence of optimal matrix-valued controls requires a considerable
set of preparations. In order to provide an orientation for the reader, we provide
an outline of the article. In section 2 we introduce notations and provide a concept
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for admissible matrix-valued controls. As for the existence proof, we need to consider
pairs (A, u) consisting of the matrix-valued control A(·) and the state u. In order to be
able to consider minimizing sequences, we need a concept of convergence of sequences
of matrix-valued functions A and the corresponding solutions u. It is amply clear
that degeneracy of the matrices will make it necessary to introduce weighted Sobolev
spaces. As the weights turn out to be exactly these matrices, we need a concept of
Sobolev spaces with varying measures. This will be considered in section 3. In section
4, we establish properties of such sequences and consider sequences of pairs (An, un)
and their weak convergence. This enables us in section 5 to formulate the optimal
control problem (5.8). The final section 6 presents the existence result. Clearly, once
existence of optimal solutions is guaranteed, one would like to know about optimality
conditions. In this context, this is still a challenging task, and we don’t know how to
establish those in full generality at this moment.

2. Notation and Preliminaries. Let Ω be a bounded open subset of RN (N ≥
2) with Lipschitz boundary. We assume that the boundary of Ω consists of two
disjoint parts ∂Ω = ΓD∪ΓN with Dirichlet boundary conditions on ΓD, and Neumann
boundary conditions on ΓN . Let the sets ΓD and ΓN have positive (N−1)-dimensional
measures. Let χE be the characteristic function of a subset E ⊂ Ω, i.e. χE(x) = 1 if
x ∈ E, and χE(x) = 0 if x 6∈ E.

Let C∞0 (RN ; ΓD) =
{
ϕ ∈ C∞0 (RN ) : ϕ = 0 on ΓD

}
. We define the Banach space

W 1,1(Ω; ΓD) as the closure of C∞0 (RN ; ΓD) in the classical Sobolev space W 1,1(Ω).
For any subset E ⊂ Ω we denote by |E| its N -dimensional Lebesgue measure LN (E).

Symmetric matrices with degenerate eigenvalues. We denote by SN := R
N(N+1)

2

the set of all symmetric matrices ξ = [ξij ]
N
i,j=1, (ξij = ξji). We suppose that SN

is endowed with the Euclidian scalar product ξ · η = tr(ξ η) = ξijηij and with the
corresponding Euclidian norm ‖ξ‖SN = (ξ · ξ)1/2. Let

L1(Ω)
N(N+1)

2 = L1
(
Ω;SN

)
be the space of integrable functions whose values are symmetric matrices.

Let α ∈ R be a fixed positive value. Let ζad : Ω → [0, α] be a given function
satisfying the properties

ζad ∈ L1(Ω), ζ−1
ad ∈ L

1(Ω), ζ−1
ad 6∈ L

∞(Ω).

Let Ψ∗ be a nonempty compact subset of L1(Ω) such that for any ζ∗ ∈ Ψ∗ the following
conditions hold true

ζad(x) < ζ∗(x) a.e. in Ω, (2.1)

ζ∗ : Ω→ R1
+ is smooth function along the boundary ∂Ω, (2.2)

ζ∗ = α on ∂Ω. (2.3)

Remark 2.1. In this setting, degeneracy of the coefficient matrices is controlled
by ζad which can exhibit degenerate behavior on sets of Lebesgue measure zero. This is
the case for the cloaking applications mentioned in the introduction, where degeneracy
takes place along the boundary of a subset of Ω.

By Mβ
α(Ω) we denote the set of all matrices A(x) = [ai j(x) ] ∈ SN such that

A(x) ≤ β(x)I a. e. in Ω, (2.4)

∃ ζ∗ ∈ Ψ∗ s.t. ζ∗I ≤ A(x) a. e. in Ω. (2.5)
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Here β ∈ L1(Ω) is a given function such that β(x) > 0 a.e. in Ω, I is the identity
matrix in RN×N , and (2.4)–(2.5) should be considered in the sense of quadratic forms.
Therefore, (2.4)–(2.5) imply the following inequalities:

if A ∈ L1(Ω; SN ), then ‖A(x)‖L1(Ω;SN ) ≤ ‖β‖L1(Ω) < +∞, (2.6)

ζ∗(x)‖ξ‖2RN ≤ (A(x)ξ, ξ)RN a. e. in Ω, ∀ ξ ∈ RN . (2.7)

Remark 2.2. For every measurable matrix-valued function A : Ω → SN we can
define the corresponding collection of its eigenvalues

{
λA1 , . . . , λ

A
N

}
(in fact eigenvalue

functions), where each λAk = λAk (x) is counted with its multiplicity. Then, in view
of the properties (2.5) of the class Ψ∗ and the Rayleigh quotient, we have: (λAk )−1 ∈
L1(Ω) for all k = 1, . . . , N . It means that, in general, eigenvalues of matrices A ∈
Mβ
α(Ω) cannot be strictly separated from zero on Ω (in the sense of almost everywhere)

by a positive constant. Because of this, these matrices are sometime referred to as
matrices with degenerate spectrum. In the sequel, properties (2.1)–(2.7) play a central
role in definition of the class of admissible controls for the control object (1.1).

To each matrix function A ∈ Mβ
α(Ω) we will associate two weighted Sobolev

spaces:

WA(Ω; ΓD) = W (Ω; ΓD;Adx) and HA(Ω; ΓD) = H(Ω; ΓD;Adx),

where WA(Ω; ΓD) is the set of functions y ∈W 1,1(Ω; ΓD) for which the norm

‖y‖A =
(∫

Ω

(
y2 + (∇y,A(x)∇y)RN

)
dx
)1/2

(2.8)

is finite, and HA(Ω; ΓD) is the closure of C∞0 (Ω; ΓD) in WA(Ω; ΓD). Note that due to
the inequality (2.7) and estimates∫

Ω

|y| dx ≤
(∫

Ω

|y|2 dx
)1/2

|Ω|1/2 ≤ C‖y‖A, (2.9)∫
Ω

‖∇y‖RN dx ≤
(∫

Ω

‖∇y‖2RN ζ∗ dx
)1/2(∫

Ω

ζ−1
∗ dx

)1/2

≤ C
(∫

Ω

(∇y,A(x)∇y)RN dx
)1/2

≤ C‖y‖A, (2.10)

the space WA(Ω; ΓD) is complete with respect to the norm ‖ · ‖A. It is clear that
HA(Ω; ΓD) ⊂ WA(Ω; ΓD), and WA(Ω; ΓD), HA(Ω; ΓD) are Hilbert spaces. If the
eigenvalues

{
λA1 , . . . , λ

A
N

}
of A : Ω→ SN are bounded between two positive constants,

then it is easy to verify that WA(Ω; ΓD) = HA(Ω; ΓD). However, for a “typical”
weight-matrix A ∈ Mβ

α(Ω) the space of smooth functions C∞0 (Ω) is not dense in
WA(Ω; ΓD). Hence the identity WA(Ω; ΓD) = HA(Ω; ΓD) is not always valid (for the
corresponding examples in the case when A(x) = ρ(x)I, we refer to [10, 27]). This is
an example of the so-called Lavrentieff gap-phenomenon. We remark that the classical
Lavrentieff phenomenon is associated with the minimization problem

inf J(W 1,p
0 (Ω)) := inf

v∈W 1,p
0 (Ω)

J(v), p ∈ [1,∞],

where

−∞ ≤ inf J(W 1,1
0 (Ω)) ≤ inf J(W 1,∞

0 (Ω)) <∞,
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but inf J(W 1,1
0 (Ω)) 6= inf J(W 1,∞

0 (Ω)). See also [21], where various extensions to
elliptic problems are discussed. As we will have to deal with minimizing sequences
of admissible matrix-valued functions, we need to establish an appropriate concept
of convergence. This concept will be based on weighted Sobolev spaces introduced
above. As the minimizing sequences will then correspond to sequences of matrix-
valued measures, we will need the concept of varying spaces (see also [17]). This will
be the subject of the next section. In order to prepare the setting, we need some more
definitions and results.

Weak Compactness Criterion in L1(Ω; SN ). Throughout the paper we will often
use the concept of weak and strong convergence in L1(Ω;SN ). Let {An}n∈N be a
bounded sequence of matrices in L1(Ω;SN ). We recall that {An}n∈N is called equi-
integrable on Ω, if for any δ > 0 there is a τ = τ(δ) such that

∫
S
‖An‖SN dx < δ for

every measurable subset S ⊂ Ω of Lebesgue measure |S| < τ . Then the following
assertions are equivalent for L1(Ω;SN )-bounded sequences (Dunford-Pettis, [13]):

(i) a sequence {Ak}k∈N is weakly convergent in L1(Ω;SN );
(ii) the sequence {Ak}k∈N is equi-integrable.
Theorem 2.1 ([13]). If a sequence {Ak}k∈N ⊂ L1(Ω;SN ) is equi-integrable and

Ak → A almost everywhere in Ω then Ak → A in L1(Ω; SN ).

Functions with Bounded Variation. Let f : Ω→ R be a function of L1(Ω). Define∫
Ω

|Df | = sup
{∫

Ω

fdivϕdx :

ϕ = (ϕ1, . . . , ϕN ) ∈ C1
0 (Ω;RN ), |ϕ(x)| ≤ 1 for x ∈ Ω

}
,

where divϕ =
∑N
i=1

∂ϕi
∂xi

.

According to the Radon-Nikodym theorem, if
∫

Ω
|Df | < +∞ then the distribution

Df is a measure and there exist a vector-valued function ∇f ∈ [L1(Ω)]N and a
measure Dsf , singular with respect to the N -dimensional Lebesgue measure LNbΩ
restricted to Ω, such that

Df = ∇fLNbΩ +Dsf.

Definition 2.2. A function f ∈ L1(Ω) is said to have a bounded variation in
Ω if

∫
Ω
|Df | < +∞. By BV (Ω) we denote the space of all functions in L1(Ω) with

bounded variation.
Under the norm ‖f‖BV (Ω) = ‖f‖L1(Ω) +

∫
Ω
|Df |, BV (Ω) is a Banach space. The

following compactness result for BV -functions is well-known:
Proposition 2.3. [1, p.17] Uniformly bounded sets in BV -norm are relatively

compact in L1(Ω).
For our further analysis, we need the following concept of waek convergence for

BV-functions.
Definition 2.4. [1, p.17] A sequence {fk}∞k=1 ⊂ BV (Ω) weakly converges

to some f ∈ BV (Ω), and we write fk ⇀ f iff the two following conditions hold:
fk → f strongly in L1(Ω), and Dfk ⇀ Df weakly-∗ in the space of Radon measures
M(Ω;RN ), i.e.

lim
k→∞

∫
Ω

(ϕ,Dfk)RN =

∫
Ω

(ϕ,Df)RN ∀ϕ ∈ C0(RN )N , (2.11)
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In the proposition below we give a compactness result related to this convergence,
together with lower semicontinuity (see [1] and [14], Theorem 1.9):

Proposition 2.5. [1, p.18] Let {fk}∞k=1 be a sequence in BV (Ω) strongly con-
verging to some f in L1(Ω) and satisfying supk∈N

∫
Ω
|Dfk| < +∞. Then

(i) f ∈ BV (Ω) and

∫
Ω

|Df | ≤ lim inf
k→∞

∫
Ω

|Dfk|;

(ii) fk ⇀ f in BV (Ω).

3. SN -Valued Radon Measures and Weak Convergence in Variable L2-
Spaces. By a nonnegative Radon measure on Ω we mean a nonnegative Borel mea-
sure which is finite on every compact subset of Ω. The space of all nonnegative
Radon measures on Ω will be denoted by M+(Ω). According to the Riesz theory, each
Radon measure µ ∈M+(Ω) can be interpreted as an element of the dual of the space
C0(Ω) of all continuous functions with compact support. Let M(Ω;SN ) denote the
space of all SN -valued Borel measures. Then µ = [µij ] ∈ M(Ω; SN ) ⇔ µij ∈ C ′0(Ω),
i, j = 1, . . . , N .

Let µ and the sequence {µk}k∈N be matrix-valued Radon measures. We say that
{µk}k∈N weakly-∗ converges to µ in M(Ω;SN ) if

lim
k→∞

∫
Ω

ϕ · dµk =

∫
Ω

ϕ · dµ ∀ϕ ∈ C0(Ω;SN ).

A typical example of such measures is

dµk = Ak(x) dx, dµ = A(x) dx, (3.1)

where Ak, A ∈Mβ
α(Ω) ∩ L1(Ω;SN ) and Ak ⇀ A in L1(Ω; SN ), (3.2)

or Ak, A ∈Mβ
α(Ω) ∩ L∞(Ω;SN ) and Ak

∗
⇀ A in L∞(Ω;SN ). (3.3)

As we will see later (see Lemma 4.3), the sets Mβ
α(Ω) ∩ L1(Ω;SN ) are sequentially

closed with respect to strong convergence in L1(Ω; SN ).
In this section we suppose that the measures µ and {µk}k∈N are defined by (3.1)–

(3.3) and µk
∗
⇀ µ in M(Ω;SN ). Further, we will use L2(Ω, A dx)N to denote the

Hilbert space of measurable vector-valued functions f ∈ RN on Ω such that

‖f‖L2(Ω,A dx)N =
(∫

Ω

(f,A(x)f)RN dx
)1/2

< +∞.

As follows from estimate (2.10) any vector-valued function of L2(Ω, A dx)N is Lebesgue
integrable on Ω.

We say that a sequence
{
vk ∈ L2(Ω, Ak dx)N

}
k∈N is bounded if

lim sup
k→∞

∫
Ω

(vk, Ak(x)vk)RN dx < +∞.

Definition 3.1. A bounded sequence
{
vk ∈ L2(Ω, Ak dx)N

}
k∈N is weakly con-

vergent to a function v ∈ L2(Ω, A dx) in the variable space L2(Ω, Ak dx)N if

lim
k→∞

∫
Ω

(ϕ,Ak(x)vk)RN dx =

∫
Ω

(ϕ,A(x)v)RN dx ∀ϕ ∈ C∞0 (Ω)N . (3.4)
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The main property concerning the weak convergence in Lp(Ω, dµε) can be expressed
as follows (see for comparison [28]):

Proposition 3.2. If a sequence
{
vk ∈ L2(Ω, Ak dx)N

}
k∈N is bounded and the

condition (3.2) holds true, then it contains a weakly convergent subsequence in
L2(Ω, Ak dx)N .

Proof. Having set Lk(ϕ) =

∫
Ω

(ϕ,Ak(x)vk)RN dx ∀ϕ ∈ C∞0 (Ω)N and making use

the Hölder inequality, we get

|Lk(ϕ)| ≤
(∫

Ω

|A1/2
k vk|2RN dx

)1/2(∫
Ω

|A1/2
k ϕ|2RN dx

)1/2

=

(∫
Ω

(vk, Akvk)RN dx

)1/2(∫
Ω

(ϕ,Akϕ)RN dx

)1/2

≤ C
(∫

Ω

(ϕ,Akϕ)RN dx

)1/2

≤ C
(∫

Ω

β(x)‖ϕ‖2RN dx
)1/2

≤ C‖ϕ‖C(Ω;RN )‖β‖
1/2
L1(Ω) ∀ k ∈ N. (3.5)

Since the set C∞0 (Ω)N is separable with respect to the norm ‖·‖C(Ω;RN ) and {Lk(ϕ)}k∈N
is a uniformly bounded sequence of linear functionals, it follows that there exists a
subsequence of positive numbers {kj}∞j=1 for which the limit (in the sense of point-

by-point convergence)

lim
j→∞

Lkj (ϕ) = L(ϕ) (3.6)

is well defined for every ϕ ∈ C∞0 (Ω)N . As a result, using (3.2), we have

|L(ϕ)| ≤ C lim
j→∞

(∫
Ω

(
ϕ,Akjϕ

)
RN dx

)1/2

= C

(∫
Ω

(ϕ,Aϕ)RN dx

)1/2

.

Hence, L(ϕ) is a continuous functional on L2(Ω, A dx)N admitting the following rep-

resentation L(ϕ) =

∫
Ω

(ϕ,A(x)v)RN dx, where v is some element of L2(Ω, A dx)N .

Thus, taking into account Definition 3.1, v can be taken as the weak limit of{
vkj ∈ L2(Ω, Akj dx)N

}
j∈N .

The following property of weak convergence in L2(Ω, Ak dx)N shows that the
variable L2-norm is lower semicontinuous with respect to weak convergence.

Proposition 3.3. If the sequence
{
vk ∈ L2(Ω, Ak dx)N

}
k∈N converges weakly to

v ∈ L2(Ω, A dx)N and the condition (3.2) holds true, then

lim inf
k→∞

∫
Ω

(vk, Ak(x)vk)RN dx ≥
∫

Ω

(v,A(x)v)RN dx. (3.7)
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Proof. Indeed, we have

1

2

∫
Ω

(vk, Akvk)RN dx =
1

2

∫
Ω

|A1/2
k vk|2RN dx

≥
∫

Ω

(ϕ,Akvk)RN dx− 1

2

∫
Ω

(ϕ,Akϕ)RN dx ∀ϕ ∈ C∞0 (Ω)N ,

1

2
lim inf
k→∞

∫
Ω

(vk, Akvk)RN dx ≥
∫

Ω

(ϕ,Av)RN dx− 1

2

∫
Ω

(ϕ,Aϕ)RN dx.

Since the last inequality is valid for all ϕ ∈ C∞0 (Ω)N and C∞0 (Ω)N is a dense subset
of L2(Ω, A dx)N , it holds also true for ϕ ∈ L2(Ω, A dx)N . So, taking ϕ = v, we arrive
at (3.7).

Definition 3.4. A sequence
{
vk ∈ L2(Ω, Ak dx)N

}
k∈N is said to be strongly

convergent to a function v ∈ L2(Ω, A dx)N if

lim
k→∞

∫
Ω

(bk, Ak(x)vk)RN dx =

∫
Ω

(b, A(x)v)RN dx (3.8)

whenever bk ⇀ b in L2(Ω, Ak dx)N as k →∞.
Remark 3.1. Note that in the case Ak ≡ A, Definitions 3.1–3.4 leads to the

usual notion of convergence in the weighted Hilbert space L2(Ω, A dx)N .
The following property of strong convergence in the variable L2(Ω, Ak dx)N -spaces

will be used later on.
Proposition 3.5. Assume the condition (3.2) holds true. Then the weak con-

vergence of a sequence
{
vk ∈ L2(Ω, Ak dx)N

}
k∈N to v ∈ L2(Ω, A dx)N and

lim
k→∞

∫
Ω

(vk, Ak(x)vk)RN dx =

∫
Ω

(v,A(x)v)RN dx (3.9)

are equivalent to strong convergence of {vk}k∈N in L2(Ω, Ak dx)N to v ∈ L2(Ω, A dx)N .

Proof. It is easy to verify that strong convergence implies weak convergence and
(3.9). Indeed, we use bk = ϕ ∈ C∞0 (Ω)N in (3.8) and then substitute bk = vk.

In view of Proposition 3.2, we may assume that there exist two values ν1 and ν2

such that (up to subsequences)

lim
k→∞

∫
Ω

(bk, Ak(x)vk)RN dx = ν1, lim
k→∞

∫
Ω

(bk, Ak(x)bk)RN dx = ν2.

Using lower semicontinuity (3.7) and (3.9), we obtain

lim
k→∞

∫
Ω

(vk + tbk, Ak(x)(vk + tbk))RN dx

= lim
k→∞

∫
Ω

(vk, Ak(x)vk)RN dx+ 2tν1 + t2ν2

≥
∫

Ω

(v + tb, A(x)(v + tb))RN dx =

∫
Ω

(v,A(x)v)RN dx

+ 2t

∫
Ω

(b, A(x)v)RN dx+ t2
∫

Ω

(b, A(x)b)RN dx.
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From this we conclude that

2tν1 + t2ν2 ≥ 2t

∫
Ω

(b, A(x)v)RN dx+ t2
∫

Ω

(b, A(x)b)RN dx ∀ t ∈ R1.

Hence, ν1 =

∫
Ω

(b, A(x)v)RN dx. Thereby the strong convergence of the sequence{
vk ∈ L2(Ω, Ak dx)N

}
k∈N is established.

4. Auxiliary Results. To begin with, we provide the following property of the
set Ψ∗ ⊂ L1(Ω) defined in (2.1)–(2.3).

Lemma 4.1. Let {ζ∗,n}n∈N be any sequence in Ψ∗. Then there is an element

ζ∗ ∈ L1(Ω) such that, within a subsequence of {ζ∗,n}n∈N, we have

ζ∗,n → ζ∗ in L1(Ω), ζ∗ ∈ Ψ∗, (4.1)

ζ−1
∗,n → ζ−1

∗ in L1(Ω), and (4.2)

ζ−1
∗,n → ζ−1

∗ in variable space L2(Ω, ζ∗,n dx). (4.3)

Proof. Strong convergence in (4.1) is a direct consequence of the compactness
property of Ψ∗. Hence, ζ∗ ∈ Ψ∗ and we may assume that ζ−1

∗,n → ζ−1
∗ almost every-

where in Ω. Since ζ∗,n → ζ∗ in L1(Ω) and ζ−1
∗ ≤ ζ−1

ad ∈ L1(Ω), it follows that the
sequence

{
ζ−1
∗,n
}
n∈N is equi-integrable. As a result, (4.2) immediately follows from

Lebesgue’s Theorem (see Theorem 2.1). As for (4.3), we make use the following
observation. For any ϕ ∈ C∞0 (Ω), we have

ζn dx
∗
⇀ ζ dx in M+(Ω),∫

Ω

ζ−1
n ϕζn dx =

∫
Ω

ϕdx =

∫
Ω

ζ−1ϕζ dx.

Hence, ζ−1
n ⇀ ζ−1 in L2(ΩT , ζn dx) (see [28]). Moreover, strong convergence in (4.2)

implies the relation

lim
n→∞

∫
Ω

ζ−2
n ζn dx = lim

n→∞

∫
Ω

ζ−1
n dx =

∫
Ω

ζ−2ζ dx.

Therefore, ζ−1
n → ζ−1 strongly in L2(Ω, ζn dx) by the properties of strong convergence

in variable spaces. The proof is complete.
Remark 4.1. Note that the main assertion of Lemma 4.1 can fail, if in definition

of the set Ψ∗, instead of condition (2.1), we admit the following one

0 < ζ∗(x) ≤ α a.e. in Ω, ζ−1
∗ ∈ L1(Ω). (4.4)

Indeed, let Ω be the open ball in RN with the center at 0 and radius 1, let 1 < δ <
N , and let ζ∗(x) := α‖x‖δRN . Then it is easy to see that ζ∗ ∈ L1(Ω) and 0 < ζ∗(x) ≤ α
for every x ∈ Ω\0. Since ζ−1

∗ = α−1‖x‖−δRN and δ ∈ (1, N), we have ζ−1
∗ ∈ L1(Ω) and

ζ−1
∗ 6∈ L∞(Ω). Moreover, ζ is smooth in Ω \ 0 and ζ∗ = α on ∂Ω. This shows that

the properties (2.2), (2.3), and (4.4) are satisfied.
Let us fix x0 ∈ Ω with ‖x0‖RN = 1

2 . We consider the following sequence {ζ∗,n}n∈N
in L1(Ω), where ζ∗,n = ζ∗ for n ≤ 2 and

ζ∗,n(x) =

{
α‖x‖δRN if ‖x− x0‖RN ≥ 1

n ,
α
nN

if ‖x− x0‖RN < 1
n .

if n ≥ 3.
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Then each function ζ∗,n satisfies the properties (2.2), (2.3), and (4.4). Indeed, ζ∗,n ∈
L1(Ω) and 0 < ζ∗,n(x) ≤ α for every x ∈ Ω. Since

ζ−1
∗,n(x) =

{
1

α‖x‖δ
RN

if ‖x− x0‖RN ≥ 1
n ,

nN

α if ‖x− x0‖RN < 1
n .

for all n ≥ 3,

it follows that ζ−1
∗,n ∈ L1(Ω) and ζ−1

∗,n 6∈ L∞(Ω). Moreover, the functions ζ∗,n are
smooth near ∂Ω and ζ∗,n = α on ∂Ω. This shows that the properties (2.2), (2.3), and
(4.4) are satisfied.

It is clear that ζ∗,n → ζ∗ strongly in L1(Ω) and pointwise a.e. in Ω. The problem
is that the sequence

{
ζ−1
∗,n
}
n∈N does not converge to ζ−1

∗ strongly in L1(Ω). Indeed, it

is the case when the sequence
{
ζ−1
∗,n
}
n∈N is not equi-integrable. As a result, we have∫

Ω

∣∣ζ−1
∗,n − ζ−1

∗
∣∣ dx =

∫
B(x0,

1
n )

∣∣∣∣nNα − 1

α‖x‖δRN

∣∣∣∣ dx→ α−1ωN as n→∞,

where B(x0,
1
n ) is an open ball with center at x0 and radius 1

n , while ωN is the Lebesgue
measure of the unit ball in RN .

For our further analysis, we make use of the following concept.
Definition 4.2. We say that a bounded sequence{

(An, un) ∈ L1(Ω; SN )×WAn(Ω; ΓD)
}
n∈N (4.5)

w-converges to (A, u) ∈ L1(Ω;SN ) ×W 1,1(Ω) as n → ∞ (in symbols, (An, yn)
w−→

(A, y)) if

An → A in L1(Ω; SN ), (4.6)

un ⇀ u in L2(Ω), (4.7)

∇un ⇀ ∇u in the variable space L2(Ω, An dx)N . (4.8)

In particular, as follows from this definition, if (An, un)
w→ (A, u), then

lim
n→∞

∫
Ω

Anη dx =

∫
Ω

Aη dx ∀ η ∈ L∞(Ω;SN ), (4.9)

lim
n→∞

∫
Ω

unλ dx =

∫
Ω

uλ dx ∀λ ∈ L2(Ω), (4.10)

lim
n→∞

∫
Ω

(ξ, An∇un)RN dx =

∫
Ω

(ξ, A∇u)RN dx ∀ ξ ∈ C∞0 (Ω)N . (4.11)

In order to motivate this definition, we give the following result.
Lemma 4.3. Let

{
(An, un) ∈ L1(Ω;SN )×WAn(Ω; ΓD)

}
n∈N be a sequence such

that
(i) the sequence {un ∈WAn(Ω; ΓD)}n∈Nis bounded, i.e.

sup
n∈N

∫
Ω

(
u2
n + (∇un, An∇un)

)
dx < +∞; (4.12)

(ii) {An}n∈N ⊂Mβ
α(Ω) and there exists a matrix-valued function A(x) ∈ SN such

that

An → A and A−1
n → A−1 in L1(Ω;SN ) as n→∞. (4.13)
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Then, A ∈ Mβ
α(Ω) ∩ L1(Ω;SN ) and within a subsequence the original sequence is

w-convergent. Moreover, each w-limit pair (A, u) belongs to the space L1(Ω;SN ) ×
WA(Ω; ΓD).

Proof. We note that (4.12)–(4.13) and (2.9)–(2.10) immediately imply the bound-
edness of the original sequence in L1(Ω; SN ) ×W 1,1(Ω;S). Moreover, due to (4.13),
we have (see the suppositions (3.1)–(3.3) of Section 3):

dµn := An dx
∗
⇀ Adx =: dµ in M(Ω;SN ).

Thus, the compactness criterium for weak convergence in variable spaces (see
Proposition 3.2) and (4.12) imply the existence of a pair (u, v) ∈ L2(Ω)×L2(Ω, A dx)N

such that, within a subsequence of {un}n∈N,

un ⇀ u in L2(Ω), (4.14)

∇un ⇀ v in the variable space L2(Ω, An dx)N . (4.15)

Our aim is to show that A ∈ Mβ
α(Ω), v = ∇u, and u ∈ WA(Ω; ΓD). It is clear that

A(x) ∈ SN and this matrix satisfies (2.4). Since An ∈ Mβ
α(Ω) ∩ L1(Ω; SN ) for all

n ∈ N, it follows that there is a sequence {ζ∗,n}n∈N in Ψ∗ such that

ζ∗,n(x)I ≤ An(x)I ≤ β(x)I a. e. in Ω, ∀ k ∈ {1, . . . , N} . (4.16)

Then, by L1-compactness of the set Ψ∗, there exists an element ζ∗ ∈ Ψ∗ such that
ζ∗,n → ζ∗ in L1(Ω) as n→∞. Moreover, Lemma 4.1 implies strong convergence

ζ−1
∗,n → ζ−1

∗ in L1(Ω), (4.17)

and (2.1)–(2.3). Hence, passing to the limit in (4.16) as n → ∞, we come to (2.5).
Thus, A ∈Mβ

α(Ω) and the limit matrix A(x) ∈ SN satisfies (2.6)–(2.7).
For our further analysis, we fix any test function ϕ ∈ C∞0 (Ω)N , and make use of

the following equality∫
Ω

(
A−1
n ϕ,Anψ

)
RN dx =

∫
Ω

(ϕ,ψ)RN dx =

∫
Ω

(
A−1ϕ,Aψ

)
RN dx, (4.18)

which is obviously true for each ψ ∈ C∞0 (Ω)N and for all n ∈ N. Since

lim sup
n→∞

∫
Ω

(
A−1
n ϕ,AnA

−1
n ϕ

)
RN dx = lim sup

n→∞

∫
Ω

(
ϕ,A−1

n ϕ
)
RN dx

≤ lim sup
n→∞

∫
Ω

ζ−1
∗,n‖ϕ‖2RN dx

by (4.17)
=

∫
Ω

ζ−1
∗ ‖ϕ‖2RN dx

≤ ‖ϕ‖2C(Ω)N ‖ζ
−1
∗ ‖L1(Ω) < +∞,

it follows that the sequence
{
A−1
n ϕ ∈ L2(Ω, An dx)N

}
n∈N is bounded. Consequently,

combining this fact with (4.18), we conclude A−1
n ϕ ⇀ A−1ϕ in the variable space

L2(Ω, An dx)N (see Definition 3.1). At the same time, strong convergence in (4.13)
implies the relation

lim
n→∞

∫
Ω

(
A−1
n ϕ,AnA

−1
n ϕ

)
RN dx = lim

n→∞

∫
Ω

(
ϕ,A−1

n ϕ
)
RN dx

=

∫
Ω

(
ϕ,A−1ϕ

)
RN dx =

∫
Ω

(
A−1ϕ,AA−1ϕ

)
RN dx.
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Hence (see Proposition 3.5),

A−1
n ϕ→ A−1ϕ strongly in L2(Ω, An dx)N ∀ϕ ∈ C∞0 (Ω)N . (4.19)

Further, we note that for every measurable subset K ⊂ Ω, the estimate∫
K

‖∇un‖RN dx ≤
(∫

K

‖∇un‖2RN ζ∗,n dx
)1/2(∫

K

ζ−1
∗,n dx

)1/2

≤
(∫

Ω

(∇un, An(x)∇un)RN dx
)1/2(∫

K

ζ−1
∗,n dx

)1/2

≤ C
(∫

K

ζ−1
∗,n dx

)1/2

implies equi-integrability of the family {‖∇un‖RN }n∈N. Hence, {‖∇un‖RN }n∈N is
weakly compact in L1(Ω), which means the weak compactness of the vector-valued
sequence {∇un}n∈N in L1(Ω;RN ). As a result, by the properties of the strong con-
vergence in variable spaces, we obtain∫

Ω

(ξ,∇un)RN dx =

∫
Ω

(
A−1
n ξ, An∇un

)
RN dx

by (3.8), (4.15), and (4.19)−→
∫

Ω

(
A−1ξ, Av

)
RN dx

=

∫
Ω

(ξ, v)RN dx ∀ ξ ∈ C∞0 (Ω)N .

Thus, in view of the weak compactness property of {∇un}n∈N in L1(Ω;RN ), we
conclude

∇un ⇀ v in L1(Ω;RN ) as n→∞. (4.20)

Since un ∈W 1,1(Ω; ΓD) for all n ∈ N and the Sobolev space W 1,1(Ω; ΓD) is complete,
(4.14) and (4.20) imply ∇u = v, and consequently u ∈ W 1,1(Ω; ΓD). To end the
proof, it remains to observe that (4.14)–(4.15) guarantee the finiteness of the norm
‖u‖A (see (2.8)). Hence, u ∈WA(Ω; ΓD) and this concludes the proof.

5. Setting of the Optimal Control Problem. Let M ∈ SN be a given con-
stant matrix satisfying the condition

(Mξ, ξ)RN ≥ m‖ξ‖
2
RN for some m > 0.

Let Q be a closed nonempty subdomain of Ω for which dist(∂Ω, ∂Q) ≥ δ > 0, where
δ is a prescribed value. Let B ∈ L∞(Q;SN ) be a given matrix-valued function such
that

σ1‖ξ‖2RN ≤ (B(x)ξ, ξ)RN ≤ σ2‖ξ‖2RN a. e. in Q ∀ ξ ∈ RN

with some σ2 > σ1 > 0.
Let f ∈ L2(Ω) and g ∈ L2(ΓN ) be given functions. We consider the following

boundary value problem

−div
(
A(x)∇y

)
= f in Ω, (5.1)

y = 0 on ΓD, ∂y/∂νA = g on ΓN . (5.2)
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Here

∂y

∂νA
=

N∑
i,j=1

aij(x)
∂y

∂xj
cos(n, xi),

cos(n, xi) is i-th directional cosine of n, and n is the outward unit normal at ΓN to
Ω.

To introduce the class of admissible controls in coefficients, we adopt the following
concept:

Definition 5.1. We say that a matrix-valued function A = A(x) ∈ SN is an
admissible control for the boundary value problem (5.1)–(5.2) (it is written as A ∈ Aad)
if

A ∈ BV (Ω \Q;SN ),

∫
Ω\Q

A(x) dx = M, (5.3)

A ∈Mβ
α(Ω \Q), A(x) = B(x) a.e. in Q. (5.4)

Hereafter we assume that the set Aad is nonempty. Moreover, it is easy to see that
for a given B ∈ L∞(Q;SN ), we can always guarantee the fulfilment of condition
Aad 6= ∅ by an appropriate choice of the matrix M ∈ SN and functions ζad ∈ L1(Ω)
and β ∈ L1(Ω).

Remark 5.1. As immediately follows from definition of the set Mβ
α(Ω \Q) and

the properties of the matrix B, (5.4) implies

A ∈Mβ̃
α(Ω) ∩ L1(Ω;SN ) with β̃ = max {β, σ2} .

Remark 5.2. In view of (5.4)1 and (2.5) (see also Remark 2.2), we deal with a
boundary value problem for the degenerate elliptic equation. It means that for some
admissible controls A ∈ Aad the boundary value problem (5.1)–(5.2) can exhibit the
Lavrentieff phenomenon and nonuniqueness of the weak solutions.

Definition 5.2. We say that a function y = y(A, f, g) is a weak solution to the
boundary value problem (5.1)–(5.2) for a fixed control A ∈ Aad and given functions
f ∈ L2(Ω) and g ∈ L2(ΓN ) if

y ∈WA(Ω; ΓD)

and the integral identity∫
Ω

(
∇ϕ,A(x)∇y

)
RN dx =

∫
Ω

fϕ dx+

∫
ΓN

gϕ dHN−1 (5.5)

holds for any ϕ ∈ C∞0 (RN ; ΓD).
Remark 5.3. It is worth to notice that the original boundary value problem (5.1)–

(5.2) is ill-possed and in general the existence of a weak solution to (5.1)–(5.2) for
fixed A ∈ Aad, f ∈ L2(Ω), and g ∈ L2(ΓN ) seems to be an open question. This means
that there are no reasons to expect that for every admissible given data f ∈ L2(Ω), g ∈
L2(ΓN ), and A ∈ Aad, this problem admits at least one weak solution y ∈WA(Ω; ΓD)
in the sense of Definition 5.2. So, it is not possible to write in this case y = y(A, f, g).
Even if a weak solution to the above problem exists, the question about its uniqueness
leads us to the problem of density of the subspace of smooth functions C∞0 (Ω; ΓD) in
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WA(Ω; ΓD). However, as was indicated in [29], there exists a diagonal matrix-valued
function A(x) = ρ(x)I with ρ ∈ Ψ∗ such that the subspace C∞0 (Ω; ΓD) is not dense
in WA(Ω; ΓD), and, hence, there is no uniqueness of weak solutions (for more details
and other types of solutions we refer to [3, 27, 29]). Thus, the mapping A 7→ y(A, f, g)
can be multivalued, in general.

To avoid this situation in our analysis, we introduce the set of admissible solutions
to the original optimal control problem as follows:

Ξw =
{

(A, y) | A ∈ Aad, y ∈WA(Ω; ΓD), (A, y) are related by (5.5)
}
. (5.6)

In what follows, we make use the following result:
Proposition 5.3. Let A ∈ Aad be a given matrix-valued function. Then there

exist bounded linear operators

γ0
A : WA(Ω; ΓD)→ H1/2(∂Ω) and γ1

A : WA(Ω; ΓD)→ H−1/2(∂Ω) (5.7)

such that
(i) γ0

A(y) = y|∂Ω and γ1
A(y) = ∂y

∂νA

∣∣∣
∂Ω

provided y ∈WA(Ω; ΓD) ∩ C(Ω);

(ii) for any function y ∈WA(Ω; ΓD)

‖γ0
A(y)‖H1/2(∂Ω) ≤ C‖y‖WA(Ω;ΓD), ‖γ1

A(y)‖H−1/2(∂Ω) ≤ C1‖y‖WA(Ω;ΓD)

with the positive constants C and C1 independent of y.
Proof. To begin with, we note that the matrix A ∈ Aad belongs to Mβ

α(Ω \ Q).
Hence, it can be associated with an element ζ∗ of Ψ such that A(x) ≥ ζ∗I and
ζad < ζ∗ ≤ α almost everywhere in Ω \ Q (see (2.1)–(2.3)). Moreover, in this case
ζ∗ : Ω \Q→ [0, α] is a smooth function along the surface ∂Ω satisfying the condition
ζ∗ = α on ∂Ω. Hence, there exist an open set O with Lipschitz continuous boundary
and a positive constant α̃ ≤ α such that

O ⊂ Ω \Q, ∂Ω ⊂ ∂O, and ζ∗ ≥ α̃ a.e. in O.

As a result, for any element y ∈WA(Ω; ΓD), we have y ∈WA(O; ΓD), and, therefore,

‖y‖2WA(Ω;ΓD) ≥ ‖y‖
2
WA(O;ΓD) =

∫
O

(
y2 + (∇y,A(x)∇y)RN

)
dx

≥ min{1, α̃}
∫
O

(
y2 + ‖∇y‖2RN

)
dx.

Thus, y ∈W 1,2(O), and, therefore, the existence of the trace operators γ0
A and γ1

A with
(i)–(ii) immediately follows from the Trace Sobolev Theorem (see [18, Section 3.]).

As an evident consequence of this result, we can give the following observation.
Corollary 5.4. Let

{
(An, yn) ∈ L1(Ω; SN )×WAn(Ω; ΓD)

}
n∈N be a sequence

such that {An}n∈N ⊂ Mβ
α(Ω) and (An, yn)

w→ (A, y) in the sense of Definition 4.2,
where (A, y) ∈ L1(Ω;SN )×WA(Ω; ΓD). Then, up to a subsequence, we have

∂yn
∂νAn

⇀
∂y

∂νA
in H−1/2(ΓD).

The optimal control problem we consider here is to minimize the discrepancies
(tracking error) between given distributions yd ∈ L2(Ω), y∗ ∈ L2(ΓD) and the solution
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of boundary valued problem (5.1)–(5.2) by choosing an appropriate coefficients matrix
A ∈ Aad. More precisely, we are concerned with the following optimal control problem

Minimize
{
I(A, y) =

∫
Ω

|y(x)− yd(x)|2 dx+

∫
Ω

(∇y(x), A(x)∇y(x))RN dx

+

N∑
i,j=1

∫
Ω\Q
|Daij(x)|dx+

∥∥∥ ∂y
∂νA

− y∗
∥∥∥2

H−1/2(ΓD)

}
(5.8)

subject to the constraints (5.1)–(5.4).

Remark 5.4. The second term in (5.8) plays a special role in this problem. Its
appearance in the cost function (5.8) is motivated by the fact that there are no ap-
propriate a priori estimates in the WA(Ω; ΓD)-norm for weak solutions y = y(A, f, g)
of the degenerate boundary value problem (5.1)–(5.2) (in the sense of Definition 5.2).
Hence, the term

∫
Ω

(∇y(x), A(x)∇y(x))RN dx together with the first one in (5.8) en-
sures the coercivity of the cost function on the space of weak solutions WA(Ω; ΓD).

Remark 5.5. Note that due to (2.9)–(2.10), we have the following obvious inclu-
sion for the set of admissible solutions

Ξw ⊂ L1(Ω; SN )×W 1,1(Ω; ΓD).

However, the characteristic feature of this set is the fact that for different admissible
controls A ∈ Aad the corresponding admissible solutions y of optimal control problem
(5.8) belong to different weighted spaces. It is a non-typical situation from the point
of view of classical optimal control theory.

It is worth noticing that for any admissible given data f ∈ L2(Ω) and g ∈ L2(ΓN ),
verification of Ξw 6= ∅ is a non-trivial matter, in general. In the particular case, when
the set of admissible controls Aad possesses the property:

A ∈ L∞(Ω; SN ), A(x) ≥ νI a.e. in Ω ∀A ∈ Aad,

Ξw 6= ∅ is obvious since the corresponding boundary value problem (5.1)–(5.2) has a
unique weak solution y = y(A). Therefore, we adopt the following hypothesis, which
is mainly motivated by Remark 5.3.

Hypothesis A. The set of admissible solutions Ξw is nonempty.

We say that a pair (A0, y0) ∈ L1(Ω; SN )×WA(Ω; ΓD) is optimal for problem (5.8)
on the class Ξw (or shortly, weakly optimal), if

(A0, y0) ∈ Ξw and I(A0, y0) = inf
(A,y)∈Ξw

I(A, y). (5.9)

6. Existence of Weak Optimal Solutions. Since our prime interest is the
solvability of optimal control problem (5.8), we begin with the study of the topological
properties of the set of admissible solutions Ξw. To do so, we give a some auxiliary
results.

Definition 6.1. We say that a sequence {(An, yn) ∈ Ξw}n∈N is bounded if

sup
n∈N

[
‖An‖BV (Ω\Q;SN ) + ‖yn‖An

]
< +∞.

15



Lemma 6.2. Let {(An, yn) ∈ Ξw}n∈N be a bounded sequence in the sense of
Definition 6.1. Then there exists a pair (A, y) ∈ L1(Ω;SN )×W 1,1(Ω; ΓD) such that,
up to a subsequence,

(An, yn)
w−→ (A, y) see Definition 4.2, A ∈ Aad, and y ∈WA(Ω; ΓD). (6.1)

Proof. By the compactness result for BV -functions (see Proposition 2.5), there
exists a subsequence of {An}n∈N, still denoted by the same indices, and a matrix
A ∈ BV (Ω \ Q;SN ) such that An → A in L1(Ω \ Q;SN ). Since An(x) = B(x) a.e.
in Q and B ∈ L∞(Q;SN ), it follows that the strong L1-convergence An → A can be
extended to the entire domain Ω. Thus,

A ∈ BV (Ω \Q;SN ), A(x) = B(x) a.e. in Q, (6.2)∫
Ω\Q

A(x) dx = lim
n→∞

∫
Ω\Q

An(x) dx = M, (6.3)

and the condition (4.6) of Definition 4.2 holds true. In order to check the remaining
conditions (4.7)–(4.8) of this definition and to show that A ∈ Aad, we make use of the
following observation.

We have (An, yn) ∈ Ξw for all n ∈ N. Hence, there is a sequence {ζ∗,n}n∈N in

Ψ∗ such that (see Lemma 4.1 for the details) ζ∗,n → ζ∗ and ζ−1
∗,n → ζ−1

∗ in L1(Ω) as
n → ∞. Moreover, by properties of Ψ∗, the L1-limit element ζ∗ satisfies (2.1)–(2.3).
Then, in view of L1-convergence An → A, we may assume that A−1

n → A−1 almost
everywhere in Ω. Since An(x) ≥ ζ∗,nI a. e. in Ω, it follows that∫

K

(
ξ, A−1

n ξ
)
RN dx ≤

∫
K

ζ−1
∗,n dx‖ξ‖2RN ∀n ∈ N

for any subset K ⊂ Ω. Hence, due to the strong L1-convergence ζ−1
∗,n → ζ−1

∗ , the
sequence {A−1

n }n∈N is equi-integrable. Then, by Lebesgue’s Theorem (see Theorem
2.1) we obtain A−1

n → A−1 in L1(Ω; SN ) as n→∞. As a result,

A ∈Mβ
α(Ω \Q) ∩ L1(Ω;SN )

by Lemma 4.3. Combining this fact with properties (6.2)–(6.3), we conclude A ∈ Aad.
To end of this proof, it remains to observe that the remaining conditions (4.7)–

(4.8) of Definition 4.2 and y ∈WA(Ω; ΓD) for the w-limiting component (A, y) of the
sequence {(An, yn)}n∈N, are ensured by Lemma 4.3. This concludes the proof.

Our next step deals with the study of topological properties of the set of admissible
solutions Ξw to the problem (5.8). The following theorem is crucial for our next
analysis.

Theorem 6.3. Assume that the Hypothesis A is valid. Then for any admis-
sible given data f ∈ L2(Ω) and g ∈ L2(ΓN ), the set of admissible solutions Ξw is
sequentially closed with respect to w-convergence.

Proof. Let {(An, yn) ∈ Ξw}n∈N be a bounded w-convergent sequence of admissible

solutions to the optimal control problem (5.8). Let (Â, ŷ) be its w-limit. Our aim is

to prove that (Â, ŷ) ∈ Ξw. By Lemma 6.2, we have: Â ∈ Aad and ŷ ∈WÂ(Ω; ΓD).

It remains to show that the pair (Â, ŷ) is related to (5.5) for all ϕ ∈ C∞0 (Ω; ΓD).
To do so, we note that for every n ∈ N, the integral identity (5.5) (with An and
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yn instead of A and y, respectively), has to be satisfied for the test functions ϕ ∈
C∞0 (RN ; ΓD). Then ∇ϕ ∈ C∞0 (RN ; ΓD)N . However, this class is essentially wider
than the space C∞0 (Ω)N in the definition of the weak convergence in the variable
space L2(Ω, An dx)N (see (3.4)). Therefore, in order to pass to the limit in that
integral identity as n → ∞, we make use the following argument (see Buttazzo &
Kogut [6]).

For every fixed n ∈ N we denote by

(Ãn, ỹn) ∈ BVloc(RN \Q)×W 1,1
loc (RN ; ΓD)

an extension of the functions (An, yn) to the whole of space RN such that the sequence

{(Ãn, ỹn)}n∈N satisfies the properties:

Ã ∈Mβ
α(D \Q), Ã(x) = B(x) a.e. in Q, (6.4)

Ã(x) ≤ β̃(x)I a. e. in D \Q, (6.5)

ζ̃∗ I ≤ Ã(x) a. e. in D \Q, (6.6)

ζ̃ad < ζ̃∗ ≤ α a.e. in D \Q, ζ̃−1
∗ ∈ L1(D \Q), (6.7)

sup
n∈N

[
‖Ãn‖BV (D\Q; SN )) + ‖ỹn‖L2(D) + ‖∇ỹn)|L2(D,Ãn dx)N

]
< +∞ (6.8)

for any bounded open domain D in RN such that Ω ⊂ D.
Here β̃ ∈ L1

loc(RN ), ζ̃ad ∈ L1
loc(RN ), and ζ̃∗ ∈ L1

loc(RN ) are non-negative functions

such that β̃
∣∣∣
Ω

= β, ζ̃ad

∣∣∣
Ω

= ζad, and ζ̃∗

∣∣∣
Ω
∈ Ψ∗, respectively.

Then by analogy with Lemmas 4.3 and 6.2, it can be proved that for every
bounded domain D ⊂ RN there exists a matrix Ã ∈ BV (D \ Q;SN ) and a func-
tion ỹ ∈WÃ(D; ΓD) such that

Ãn → Ã in L1(D)), ỹn ⇀ ỹ in L2(D), (6.9)

∇ỹn ⇀ ∇ỹ in the variable space L2(D, Ãn dx)N . (6.10)

It is important to note that in this case we have

ỹ = ŷ and Ã = Â a.e. in Ω. (6.11)

Taking this fact into account, we can rewrite (5.5) in the equivalent form∫
RN

(
∇ϕ, Ãn(x)∇ỹn

)
RNχΩ dx =

∫
RN

fϕχΩ dx

+

∫
ΓN

gϕ dHN−1 ∀ϕ ∈ C∞0 (RN ; ΓD). (6.12)

In what follows, we note that due to (6.9), we have Ãn → Ã strongly in L1
loc(RN ;SN ).

Hence,∫
RN

(
χΩ ξ, Ãn χΩ ξ

)
RN

dx =

∫
RN

(
ξ, Ãn ξ

)
RN

χΩ dx

−→
∫
RN

(
ξ, Ã ξ

)
RN

χΩ dx =

∫
RN

(
χΩ ξ, Ã χΩ ξ

)
RN

dx (6.13)
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for any vector ξ ∈ RN . As follows from convergence property (3.9), (6.13) implies

strong convergence χΩ ξ → χΩ ξ in the variable space L2(RN , Ãn dx)N . Taking (6.9)–
(6.10) into account, we can pass to the limit in (6.12) as n→∞ and obtain∫

RN

(
∇ϕ, Ã(x)∇ỹ

)
RNχΩ dx =

∫
RN

fϕχΩ dx+

∫
ΓN

gϕ dHN−1 ∀ϕ ∈ C∞0 (RN ; ΓD)

which, due to (6.11), is equivalent to∫
Ω

(
∇ϕ, Â(x)∇ŷ

)
RN dx =

∫
Ω

fϕ dx+

∫
ΓN

gϕ dHN−1 ∀ϕ ∈ C∞0 (RN ; ΓD).

Hence, ŷ ∈ WÂ(Ω; ΓD) is a weak solution to (5.1)–(5.2) under A = Â in the sense of

Definition 5.2. Thus, the w-limit pair (Â, ŷ) belongs to set Ξw, and this concludes the
proof.

We are now in a position to state the existence of weak optimal solution to the
problem (5.8).

Theorem 6.4. Let f ∈ L2(Ω), g ∈ L2(ΓN ), yd ∈ L2(Ω), and y∗ ∈ L2(ΓD) be
given functions. Assume that the Hypothesis A is valid. Then the optimal control
problem (5.8) admits at least one solution

(A0, y0) ∈ L1(Ω; SN )×WA0(Ω; ΓD).

Proof. Since the cost functional I = I(A, y) is bounded below and Ξw 6= ∅, it
provides the existence of a minimizing sequence {(An, yn) ∈ Ξw}n∈N to the problem
(5.9). Then,

inf
(A,y)∈Ξw

I(A, y) = lim
n→∞

I(An, yn) = lim
n→∞

[ ∫
Ω

|yn(x)− yd(x)|2 dx

+

∫
Ω

(∇yn(x), A(x)∇yn(x))RN dx+

N∑
i,j=1

∫
Ω\Q
|Danij(x)|

+
∥∥∥ ∂yn
∂νAn

− y∗
∥∥∥2

H−1/2(ΓD)

]
< +∞ (6.14)

implies the existence of a constant C > 0 such that

sup
n∈N
‖∇yn‖L2(Ω,An dx)N ≤ C, ‖ ∂yn

∂νAn
‖H−1/2(ΓD) ≤ C, (6.15)

sup
n∈N
‖yn‖L2(Ω) ≤ C, sup

n∈N
‖An‖BV (Ω\Q; SN ) ≤ C. (6.16)

Hence, the minimizing sequence {(An, yn) ∈ Ξw}n∈N is bounded in the sense of
Definition 6.1. Hence, by Lemma 6.2 there exist functions A0 ∈ L1(Ω;SN ) and

y0 ∈ WA0(Ω; ΓD) such that, up to a subsequence, (An, yn)
w−→ (A0, y0). Since the

set Ξw is sequentially closed with respect to the w-convergence (see Theorem 6.3), it
follows that the w-limit pair (A0, y0) is an admissible pair of (5.8) (i.e. (A0, y0) ∈ Ξw).
Moreover, by (6.15)2 and Corollary 5.4 of Proposition 5.3, we have:

∂yn
∂νAn

⇀
∂y0

∂νA0

in H−1/2(ΓD). (6.17)
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To conclude the proof it is enough to observe that by (6.17) and (An, un)
w→ (A0, y0),

the cost functional I is sequentially lower w-semicontinuous. Hence,

I(A0, y0) ≤ lim inf
n→∞

I(An, yn) = inf
(A,y)∈Ξw

I(A, y),

i.e. (A0, y0) is an optimal solution. The proof is complete.
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