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Abstract

We study the asymptotic behaviour of an optimal boundary control problem for az linear
elliptic equation in two-dimensional domain ). with mixed types of boundary conditions. We
assume that the boundary of domain (). contains a highly oscillating part with respect to ¢,
and we suppose that the control influence is realized via the Neumann boundary condition
posed on the highly oscillating part of boundary. We present some ideas and results concerning
the asymptotic analysis of such problems as ¢ — 0 and derive conditions under which the
homogenized problem can be recovered in an explicit form. We show that the mathematical
description of the homogenized optimal boundary control problem is different from the original
one. These differences appear not only in the limit cost functional, geometry of a limit domain,

and Neumann boundary conditions, but also in the control constraints.

Keywords: homogenization, asymptotic behaviour, optimal control, rough boundary, singular measure

1. Introduction

In this paper we are concerned with the following optimal control problem for linear
elliptic equation in two-dimensional domain with mixed (Neumann and Dirichlet) boundary
conditions
o

1
Ly =5 [ o+

/ |y — Yad|® dz — inf (1.1)
2 Q0
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subjected to the constraints

—Ay=f in €.,
o (1.2)
y=0 on I'D 5L =u on ry,
ueUs= {v € 12 (rN) : Noll 2y < ﬁ*} . (1.3)

Here, a > 0, 8* > 0, f € L?(D) and y.q € L?() are given functions,

. 1 2 ‘ 0< a1 <L
Q. = R ~
© { |::E2:| < —eF (%) < x99 < @(1‘1) ’

X1 2 0<x <L
D= R? |
{ [332:| < —-1< To < (25(361)} ’
where L € R is a positive value,® € C' ([0, L]) and F € C4(0,1) are given functions such
that

®(z)>0, Vze(0,L), F(y)elo1], Vyelo,1],

y — F(y) is 1-periodic extension of the function F : [0,1] — [0,1], and € is a small positive
parameter.

We study the asymptotic behaviour of the optimal control problem (1.1)—(1.3) as the
parameter € tends to zero. The characteristic feature of this problem is the fact that the
boundary 02 of domain €2, where the boundary problem is posed, contains the very highly
oscillating part with respect to €, as € — 0. We consider the optimal control problem assuming
that the control influence is realized via the Neumann boundary condition posed on the highly
oscillating part of boundary.

Boundary value problems in domains with highly oscillating boundary are prototypes of
widely used engineering constructions as well as many other physical and biological systems
with very distinct characteristic scales. The computational calculation of the solutions of these
problems is very complicated due to the geometry of such domains. Indeed, increase in the
size of computational domains naturally leads to longer computing time and makes it very
difficult to keep an acceptable level of accuracy. Therefore, asymptotic analysis is one of the
main approach to study of boundary value problems in such domains.

We would like to emphasize that in contrast to the approach of Kesavan & Saint Jean
Paulin [9] and [10], Saint Jean Paulin & Zoubairi [12] and Conca, Osses & Saint Jean Paulin [4]
we do not just look for a limit of optimal control functions and for a limit of minimal values of
the cost functionals. Rather, we stay with the optimal control problem in the original sense and
look for a homogenized problem as some variational limit of the original one. This limiting
problem should be unique (as a result of some passage to the limit), and should preserve
the well known variational properties such as the convergence of both optimal solutions
and minimal values of a cost function and, of course, should finally have a clearly defined
structure including the limit form of a state equation, control and state constraints, a limit
cost functional, and should be defined in a "simpler" domain. Our approach, the so-called



ASYMPTOTIC ANALYSIS OF OCP IN DOMAIN WITH A ROUGH BOUNDARY 3

"direct approach" of calculus of variations, is based on ideas of the theory of I'-convergence
and the concept of variational convergence of constrained minimization problems [11] and its
variational properties. The analysis is very much in the spirit of Attuoch [1] and Buttazzo &
Dal Maso (2, 3].

Using the ideas of the I'-convergence theory and the concept of the variational convergence
of constrained minimization problems, we show that the homogenized problem for the original
one can be recovered in the following analytical form:

[Aor| [* 5 - 2 :
I(u,y) = u(s)ds+ = [ (Y — Yaq)” dx = inf (1.4)
2 Jo 2 Ja,

subjected to the constraints

—Ay=f in o,
y=0 on TIp,
Ay

%:U\Aaﬂ on IV,

uwely= {v e L? (FN) ol ey < \A8F|_1/25*} ;

where TV = {(21,0)|0 < 21 < L}, TP = 9Q0 \ |TV, and |Ayr| is the 1-dimentional Hausdorff
measure of the arc segment {zo = —F(x1) : 0 < x; < 1}, i.e.

0
’A3F| = /1 \/ 1 + [F’(a:l)del.

2. Statement of the Problem and Some Preliminaries

We define a bounded open subdomain € of R? as follows
X1 2 0<x <L
Qo = R .
0 { |:x2] < 0< a9 < 915(331)}
In order to describe the domain €. with a rough boundary, we set (see Fig.1)

o 1 2 0<$1<L .
Ql_{[xg]ER ’—1<I2§0}, D =QyUQ,.
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T2 N
Tro = (I)(Cljl)

Qo
_1/ 7

Fig. 1. Example of D-domain

v

We say that ). is a domain with rough boundary if

0<x; <L }

(L RETE S

where it is assumed that y — F(y) is L-periodic extension of the function F : [0,1] — [0, 1],
and ¢ is a small parameter (see Fig.2).

Remark 2.1. Here in after we suppose that € varies in a strictly decreasing sequence of positive
numbers which converges to zero and such that N, = L/e are integers. So, when we write
€ > 0, we consider the elements of this sequence only.

oM
Q
e "
T LYA7AY/ T
-1 D

Fig. 2. Example of domain 2.

Let 09 be the boundary of .. It is clear that the following decomposition of 9€). holds
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true
9. =1Nur?,
where

Vnr? £, TV =00.n0,
_0_7 VOSJIQS(I)(O),

z2

0 =90 TN = [#], vo<a <L, 29 = ®(xy),

z2

ol VO< 2 <O(L).
It is worth to note that the part of boundary I'YY has a such type of oscillations that the ratio
of its amplitude to the period of oscillation remains bounded as the small parameter ¢ tends
to zero.

The optimal control problem, we are going to consider in ), is to minimize the cost
functional

1 «
L) =5 [ Pat 5 [yl o (21)
2 Jry 2 Ja,
subjected to the constraints
—Ay=f in Q,
Yy = 0 on FED, (22)
0
a—y =u on I‘év,
n
ueUs= {v € 12 (rN) : Noll g2y < 5*} . (2.3)

Here, a > 0, 8* > 0, f € L?(D) and y.q € L?()) are given functions.
Let H}(D) be the classical Sobolev space defined as the closure of C§°(D) with respect

to the norm
1/2
lellmgeon = ([ 1veaz) "

Since Q. C D and I'? C 9D for all € > 0, we set

HY (Q.:TP) = {y

0 Yy € H&(D)},

£

where the index ¢ has been omitted in I'? because this part of boundary does not depend on
e>0.
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Remark 2.2. Taking the definition of HE(Q;TP) into account, we can always associate every
function y € H}(Qe; T'P) with its prototype § € H}(D) such that

§(@) = y@) ae.in Q. Clylge.roy = 15l m):

where
g ey = [ IVoPde 80 = [ V3P d
Qe D

and the constant C' depends on €y and 19/l 2 000p)-
Definition 2.1. We say that a pair (u,y:) is feasible to the problem (2.1)-(2.3) if
ue € Us; e € Hy(QT7)

and the integral identity

/ (Vye, V) dw—/ f<pda:+/ U dH? (2.4)
Qe Qe ry

holds true for each test function ¢ € C§°(D).

Let Z; be the set of all feasible pairs to the problem (2.1)—(2.3). We begin with the
following result.

Theorem 2.1. For every ¢ > 0, f € L?(D), and v € L*(TY) there exist a unique solution
y € HE(Qe;TP) to the boundary value problem (2.2) such that

. (1 :
90l mysep < dian DI L2y + \/60 (5 D) Jullpeyy . (29)
where diam D is the Fuclidean diameter of D, i.e.

1
diam D = sup [§ — n|g2, and & =
neD \/1 + (sup xwé[O,lHF’(SU)D

5

Proof. Since the set C§°(D) is dense in H{ (D), it follows that the integral identity (2.4) can
be extended (by continuity) to the test functions ¢ € H}(Q;TP). As a result, relation (2.4)
leads us to the following variational statement of BVP (2.2):

Find y € H}(Q:;TP) such that

/ (Vy,Vz2)p2dz =

fzd:v—l—/ uyo(z) dH', Vze HY(QTP), (2.6)
€ Qs Fév

where 7o(z) stands for the trace operator.
Let us show that the right hand side of (2.6) is a linear continuous functional with respect
to 2 € H}(Q:;TP). Indeed,
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/Q Fzde < | fllzon 20 < 1l l2l 2@, < (by Friedrix inequality)
< 112y CIV 2 2@y = ClF 2oy l2 0oy (2.7)

with C' = diam ), < diam D.

As for the second term in (2.6), we note that the well-known trace theorem for Sobolev
spaces states that, for a Lipschitz continuous domain 2., there exists a unique linear continuous
map, called the trace operator,

o : Hy (Qe) — HA(TY)
such that

1. for any y € H(Q:) N C°(€) one has y(y) =y

3
N
Fa

2. the following inequality
ocl0@ sy < litcllengy (72 IV8IBa@ e + A+ 0 D) ylReq,)  (289)

holds true for all o € (0,1) and y € H}(Q;TP), where p. is a vector field on Q. such
that

e € Cl(§€§R2)a (Maa ns)RQ > 0. on Fi\f’

ne is the outer unit normal vector.

For the details, we refer to P. Grisvard [8, Th. 1.5.1.10].

A

Fig. 3.
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To begin with, let us show that there exists a positive constant dp such that

(1, (2))ge > 8o for each x € TV (2.9)

and dg is independent of &, where p = [_01} . Indeed, let z* be an arbitrary point of the

boundary T'Y. Following the definition of 'Y, we may suppose that
zt =e(k+y),

where k € Z is an integer, and y € [0, 1].
Then the tangent vector to I'Y at x can be represented as follows (see Fig.3)

« 1 el = Lraral = Lrol
vV\xr = ~ = ~ * = ~ =
L(=F @] _ )| FFE] T FRer] T R
(because of the 1-periodicity of the function F).
Hence,

1 [—F’(y)]

2 -1
1+ (F()

is the outer normal vector to I'Y at the point x*. Taking this fact into account, we deduce
from (2.9)

ne(x*) =

(o (s = — e
R T T F )R

Using the fact that F' € C}(0,1), we have

/ !
p— <
1E e o,1)) Omgyagl\f? Wl <p

~F'(y)- 04 (~1)- (~1)) = H(lFW >0, (2.10)

for some 8 > 0. As a result, we obtain

N | I
<M’n€(w )>R2 VT EWE ViR &

for all #* € TY and all £ > 0.
Thus, the a priori estimate (2.8) with u. = [_01} and o = 3, leads us to the following

inequality
1
dollr0 (W17 2wy < §”Vy||%2(95)2 +3[lyll720. Yy € Hy(Q:TP). (2.11)
Since ||yl z2(q.) < diam Qc[|Vy||12(q.)2 by Friedrix inequality, it follows from (2.11) that

1|1 )
o) ey < 85" | 1900 + Bl Q2T |

(2.12)
1 .
<1+ p2 [2 + 3diam? D} Hy”i{&(QE;FD)'
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Hence, the second term in the right hand side of (2.6) can be estimated as follows

[ w2 a1 < el o) ey

€

by (2.12

) 1 )
< ¢ (146212 (5 + 3diam? D) lull 2 12l sy i)

—~

Combining this estimate with (2.7), we see that there exists a linear continuous functional
G. € (H}(Qe;TP))"

such that

_ 1 HY QTP
(612 oy sy = o, P25+ [ w0 dl, vz € Hy(@T?)

€

and

1 .
||GE||(H&(QE;FD))* S |u||L2(F£_V)\/(1 + 52)1/2 (2 + 3d1am2 D> . (213)

It remains to note that the bilinear form

ac(y, 2) = / (Vy,Ve)gdr, V= € HY(Q:TP)

€

is continuous and coercive on Hg(Qg;T'P).

Hence, by Lax-Milgram Theorem, variational problem (2.6) admits a unique solution
Y. € HE(QeTP) for every u € L2(T'Y) and f € L?(D).As for the estimate (2.5), it immediate
follows the energy equality

HyQHHé(Qg;FD) =as(y,y) = <G€’y>(Hg(Qs;rD))*;H3(Qe;FD) = HGEH(H&(QE;FD))* Yllmgerr)
and inequality (2.13). O

Our next intension is to study the optimal control problem (2.1)-(2.3) that can be repre-
sented as the following constrained minimization problem

< inf Ig(u,y)> . (2.14)
(u,y)EE,
With that in mind, we make use of the following observation. Let {(uk, Yi) € Eg}zo_l be an

arbitrary sequence of feasible solutions to (2.1)—(2.3) such that

up — u  weakly in  L2(TY),
yp —y weakly in  H3(Q; o)
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as k tends to infinity. Let us show that the limit pair (u,y) lies in the set Z. as well. In other
words, we are going to prove that = is sequentially closed subset of L2(TY) x H}(Qg;TP)
with respect to the product of the weak topologies of L?(I'Y) and H}(Q;TP).

To do so, we notice that, for each k € N, the following identities

/(Vyk,Vz)Rgda:—/ fzdx—i—/ ugyo(z) dH! (2.15)
Qe Qe ry

>

hold true for every z € H}(Q; TP).
Hence, passing to the limit in (2.15) as k — oo, we obtain

/(Vy,Vz)dex— i fzdx+/FNmo(z)dH1, Vz € HY(Q.;TP)

€

by definition of the weak convergence in L*(TY) x H(Q.;T'P). Since the boundary value
problem (2.2) has a unique weak solution for each f € L?*(D) and u € L*(TY) (see, for
instance, Theorem 2.1), it follows that the pair (u,y) satisfies the relations (2.2) in weak
sense. It remains to notice that the norm || [|2(ry) is sequentially lower semi-continuous with

respect to the weak convergence in L2(I'Y), i.e.
lim inf lukll 2wy 2 llullpzryy.- (2.16)
—00
Since (ug,yr) € Ec for each k € N, it follows that {ux}72, C Us. Hence, property (2.16)

gives
B* Z lim inf ||uk‘||L2(Fé\7) Z ||u||L2(FéV)7 .e u€E Ug:
k—o0

Thus, combining the indicated properties of the limit pair (u,y), we can claim that
(UJ y) € EE;

i.e the following inference is valid:
Claim 1. The set =, is sequentially closed with respect to the weak topology of

LATN) x H (Q;TP).
It is worth to notice that the linearity of boundary value problem (2.2) and the convexity of
the set Us imply:
Claim 2. The set of feasible pairs =, is convex.

The next observation, we are going to make use of, deals with the boundedness of the set
Ze . Indeed, let (u,y) be an arbitrary feasible solution, i.e (u,y) € Z.. Then

[ (u, y)HL2(FgV)xH5(Qs;FD) = ||U||L2(rgv) + ||3/HH5(QE;FD)

by (23) by (2.4) .
< B+ lllgrurey < B +diam D fllz2(p)

1
+ \/(50_1 <2 + 3diam2 D> HUHL2(F5)

< B* + diam D|| f[| .2(py —I-ﬁ*\/éo_l <; + 3diamD) < 4oo. (2.17)
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The crucial point we would like to emphasize here, is the fact that the estimate (2.17) is
uniform with respect to the small parameter € > 0. So, the following assertion holds true:
Claim 3. The sets {Z.} is uniformly bounded in L%(TY) x H}(Q;TP).
It remains to indicate the lower semi-continuity property of the cost functional I, : =, — R.
Indeed, for an arbitrary sequence {(uk,yx)}pey C Ec such that

(us ) "7 () weakly in L*(TN) x Hi (9 T7)
We have (by the Relich-Kondrashow Theorem)
yp —y strongly in L*(Q) as k — oo. (2.18)

Hence,

.. | 2 O 2

lim inf I (ug, y) = M inf o flugll72pyy + 5 Bminf fly, = yaallz2 qq)
by (2.18) 1 .. . «

= 3 hkn_lgf ||Uk\|%2(rg) + 5’?4 - yad”%ﬂ(ﬂo)

by (216) 1 o )

2 §||U”L2(r§v) + EH?J - yad||L2(Qo) = I(u,y).

As a result, we arrive at the following obvious property of I..

Claim 4. The cost function I, : 5. — R is strictly convex and lower semi-continuous with
respect to the weak topology of L2(TY) x H}(Q;TP).

We are now in a position to state the main result of this section. Namely, in view of
the claims 1-4,the following result is a direct consequence of the the well-known theorem of
Calculus of Variations (see A. Fursikov 7], G. Das Maso [5])

Theorem 2.2. For every ¢ > 0, f € L?2(D), and yuq € L*(Q), there exists a unique pair
(u?,42) € Z. such that

L(ud,y2) = ot L(wy).

The main question, we are going to discuss further on, is about the limit properties of the
sequence of optimal pairs

{(ug, yg) € Ef}e>0 )

In spite of the fact that this sequence is bounded (see (2.17))

sup |62l ey + 191l sy @i |
e>0

1
1+ \/50—1 (2 + 3diam? D)] ,

the study of the asymptotic properties of {(ug, y0) € Eg} is not trivial. Indeed, for every fixed
€ > 0, the optimal pair (ug, yg) belongs to the corresponding functional space

(2.19)
< diam D- || f|z2(py + B”

LATY) x Hy(QsTP)
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and this space at level € varies with €. So that a preliminary problem is to define the
convergence formalism of sequences of pairs which belong to different spaces. We note that the
way, this convergence should be defined, must be quite flexible. As follows from the definition
of the set )., we can not rely on the existence of an appropriate space L2(T') x H}(2) so that
it contains all spaces {L*(T'Y) x H}(Qe;TP)}__ and the 'limit’ pairs of the sequences in the
indicated scale of variable spaces.

e>0

3. Description of the sets ). and I'Y in the terms of singular
measures

We devote this section to the construction of measure-theoretical tools aimed to the
description of the class of feasible solutions to OCP (2.1)—(2.3) in the terms of so-called
singular periodic Borel measure on R%. With that in mind, we follow Zhikov’s approach
(see [13]), and introduce the following sets

0<z <1
Apr = {(ajl,xQ)T c R?2 ‘ o = ilF(xl)} (3.1)

and

<
Ap = {(1'1,902)T GRQ‘ NN }

—F(xl) <x9 <0
Let p and v be periodic finite positive Borel measures in R?. Let

<
Y = {(m,xz)T €R2‘ Osar<l }

—00 < x92 < 400

be the cell of periodicity for p and v. We assume that the Borel measures y and v are the
probability measures in R? such that, 4 and v are concentrated and uniformly distributed on
the sets

ABF and A F,

/Y dp = /Y =1, (3.3)

Remark 3.1. Note that by definition p (Y \ Agr) = 0.

Hence, p is singular with respect to the Lebesque measure L?. Moreover, any functions,
having the same value on the set App coincide as elements of L?(Y,du). Here, the Lebesque
space L?(Y,du) can be defined in a usual way with the corresponding norm

1/2
1Pl = ( / |f<s>2du> |

Let |Apr| be the 1-dimensional Hausdorff measure of the arc {zo = —F(z1) : 0 < x; < 1}, i.e.

Aor] :/1 VIH PR das.

respectively. Hence,
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Then, by definition of u, we have

/{IQ_F pdH! = ’Aaﬂ'/ywd” 5.4

0<z1 <1

for each smooth function C§°(R)2.

The similar reasoning can be applied to Y-periodic probability measure v in R?. In
particular, for any ¢ € C§°(R)?, we have

1 p0
odr = a?(A /godu— / / dxodx ~/g0d1/. 3.5
/{ F(z1 <:c2<0} Ap ( F) v 0 J-F(z) 201 v ( )

0<zi<1

Remark 3.2. Since o?(Ar) # 0 and

/AFSDd”j:/Ql o(2) XA, () dz = o*(AF) /gzlwdy

for any o € C§°(IR?), it follows that the measure v is absolutely continuous with respect to the
two-dimensional Lebesque measure on R2. Here, Xa, stands for the characteristic function
of the set Ap, i.e.

]-7 T = (.1'1,1'2) S AF;
XA () =
ar(@) {07 otherwise.

Let S be any Borel set in R?2. We introduce two scaling measures p. and v. by the rules

pe(S) = ep(e™'S) (3.6)

and
ve(S) = v(e™1S), (3.7)

respectively. It is clear that the measures . and v, have the same period €Y. Moreover, the
direct calculations show that

pe(eY) i= /sY dpe by(:ﬁ) © /eY an (7) " :. |A8F| /AaF B
[ac er, y_—sF< >]}dH <g>

w

|A8F| / (z,y)T €R2

: M/O o e ()
1
_ !AZF\/O \/52+52(F’(r gd - \AaF!/ 1+ (Fr(r

g
- myorl = e 1= [ du=env) (3.8)
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and

ve(eY) = dv, RRGR / dv ( : )
: 5) 2, / / $2 d x1 _ {xgl = yl}
€ AF —6F(€1‘1 E ( ) % = y2

:52-// dys dy; = £2- A (AF
a?(AF) Jo J_re) v2 e Q%AF) (BF)

=t 1= 52/ dv = 2u(Y). (3.9)
Y

lon
~
—

w

Ut

Let us show that the properties (3.8) and (3.9) imply the weak-* compactness of the sequences
{pe}eso and {v:}eso in the space of Radon measures M(R?). Tt is worth to remind that if
o is a Borel measure in R? and o(K) < +oo for every compact subset K C R?, then o is a
Radon measure (i.e. ¢ € M(R?)).

Definition 3.1. Let 0., 0 be non-negative Radon measures in R? . Then {o:}e>0 is called to
be a weakly-* convergent to o as € — 0 if

lim godag—/ pdo forall ¢ e CP(R?).
RQ

e—0

We begin with the following limiting properties of the singular measures { e = ENL (7>}
3 e>0

Proposition 3.1. For every ¢ € C§°(R?), we have

+oo
lim cpd,u8 / o(x1,0) dxy, (3.10)
e—0 o
that is,
dpe = Ofzo—0} dz1dx2 in M(R?), (3.11)

where d7,,—gydz1 dzy stands for the product of the 1-D Lebesque measure dzy and the Dirac
measure 6{362:0} dxs.

Proof. Let ¢ € C§°(R?) be an arbitrary test function. Let us partition the plane R? onto the

strips
k

€Yk:€Y: [0

] , keZ

of the width . Then

/ o dpe = Z/Y ¢ dpe = w(xi)/y dpse
€Yy

keZ keZ
by € Y -periodicity of p. c
= § o) dpte
kez Y

by (3.8) Z o(aS)eu(Y) = 2590(332)7 (3.12)

keZ keZ
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where 7, € € (Aap + [ISD are some points at the arc Q. NeYy, (the existence of such points

immediately follows from the Mean Value Theorem). To be more specific, we set
w5, = (27 75,) " € R

and
xi’o = (274, 0)" € R?

for all k € Z and € > 0. Here, by definition of the set eAyr, we have

Since
p(ag) = (2 4, 25 4) = (5 1, 0) + (9(25 1, 25 1) — (27 4,0))
= () + (plaf) — p(a))) (3.14)
and
0, 0, by (3.13)
lp(ah) = p@)] < Myllag — 2%l ~ =7 My |eF(a)] <
<M, e (because F(y) € [0,1]). (3.15)

Hence, from (3.12) we conclude

, ) by (3.14) — (3.15) .
lim | @du. = ;1_r>r(1) Z ep(zy) lim Z ep(x,”) + il_I}(l) Z eD(e),  (3.16)

=20 JRe kez ez kel
where
lim Z 590(302’5) = / ©(x1,0)dz;  (by construction of the Riemann sum)
e—0 R
keZ
and
e|D(e \<Za|<p ) < M, Za—{k— }—M@~€—>O as €= 0. (3.17)

keZ keZ

Indeed, in order to specify the details of the limit passage in (3.16) and (3.17) as ¢ — 0,
we note that ¢ € C(‘]’O(]RQ) has a compact support.
Then, for a given € > 0, there exists a real value R > 0 such that

supp ¢ C Br(0) = {[W] eR?: [yl < R}

So, we can suppose that
[N(e)]+1

Yoeplap) = Y ep(xy),

kEZ k=—[N(¢)]—1
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where N(g) = e 'R and [a] stands for the integer part of a (See Fig.4)

. 0 0t
R — R
£
Fig. 4.
It means that
[N(e)]+1

0,e

Z ep(z),”)
k=—[N(e)]-1

is the Riemann sum of the integral fjoooo ©(x1,0) drq. Hence, we arrive at the desired relation
(3.16).
The same reasoning should be applied for substantiation of the limit passage (3.17).
Thus, the equality (3.10) holds true for any ¢ € C§°(R?). O

Proposition 3.2. For every ¢ € C§°(R?) the following relation

lim | @dv.-=0 (3.18)

e—0 R2

holds true, i.e.
v. =0 in M(R?) as e—0.

Proof. Proceeding as we did it in Proposition (3.1), we fix an arbitrary function ¢ € C§°(R?).
Then

/ pdve = Z/ wdu. :Zgo(xi)/ dve
R2 = eYy
k=21

keZ 2L

(by e-periodicity of ) Z () / dv. B Z o(aS)(Y)
ez ey keZ

(by (3.3)
TETN T p(ah),
kEZ

where z7, € € (AF + [ISD is some point of the set Q. NeYy.
Since ¢ € C§°(R?), it follows that there exists a constant M, > 0 such that

lo(x)| < M, Vzxe R2.

As a result, we obtain

Z€2<p(:vi) < My-€? Z 1= Mye?
kEZ kEZ

™ | =

=eM,—0 as e—0.
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Thus,

lim pdre =0,

e—0 R2

and this concludes the proof. O

4. On Reformulation of OCP

The main point we are going to touch in this section is to give a new description of the
original optimal control problem (2.1)—(2.3) in the terms of the scaling measures p. and v,.

To do so, let us consider the last term in the integral identity (2.6). Using notation of the
previous section, we can write down

Ne.=L/e
/ uyo(z) dH' =
ry

J=1

1
/{ (j—1)e<zq <je } uryo(z) dH

xQ:%F(%jfns)

Ne
(by (3.4) and (3.6) ) i
Y = Z il /{ (1—1)s<x1<js;x2em’} ol e <g>

j=1 v+ 65 0],

= 8ol [ o = 80| [ w1
5Y+[E(jgl)] QU

Following the similar manner, we have (for the rest terms of identity (2.6))

o fzdx = o de$+/{(x1,x2)6R2H ocei<L ”fzdx,

sﬁ‘(m?l)<12§0
/ (Vy,Vz)ge dz :/ (Vy, Vz)g2 dw—{—/
Qe Qo {($17$2)€R2

where

(Vy, Vz)g2 dz,

[ 0<z1<L }}
=T
—EF(%)<J)2SO

Ne

/{{ 0<ay<L }}dex: Z /{{ (j—1)e<a <je ]}

_Eﬁ(z?l)<x2§0 j:1 —Eﬁ(z?l)<322§0

N
(by (3.5), (3.7) ) o2( AF)Z / Fzd
- €
j=1 5Y+[ (

e ggl)]
Si y d e — d ()
( ince /{Uy_fl(sYﬂE“O”D}fZ v /D:Qouﬂl [z 1/)

ZQQ(AF)/QUQ fzdve. (4.2)

fzdx
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Remark 4.1. The following relation is the direct consequence of (4.2)

Olg(lAIT)/Q f($)2($)XQE\QO(:E) dx = o fz dl/e, (4.3)

where z € H(D) is an arbitrary distribution, and Xo.\q, is the characteristic function of the

set
0<ax1 <L, }

0.\ Qo = {(:cba:Q) € D‘_&_ﬁ <%> <0

Taking these transformations into account, we see that the following descriptions
{ve L2 s ol agey) < 87}

and
{v e LD, due) : [Vl 2 ape) < 1Borl 128"}

are equivalent. Here, L?(D, dv.) is the Lebesgue space with respect to the measure v. which
is endowed with the norm

/172 Didpe) = f2(z) dpe.
( ) b

Indeed, to this inference more evident, it is enough to observe that (see (4.1))

/FN w?dH! = (/D u? d[La) |Agr|. (4.4)

As a result, we can reformulate the OCP (2.1)—(2.3) as follows: Find a pair (22, 7?) such that

@ € LA(D,dpue), 0 € Hy(QTP), L@,70) = inf_ I.(uy), (4.5)
(wy)€d,
where Aop
~ OF [0
Ic(u,y) = 9 HUH%%D,C%) + 5”9 - yad”%?(ao),

and E, is the subset of L2(D, du.) x HJ (D) such that (u,y) € Z. if and only if the following
conditions hold true
(0) Mlull 2(p.apey < 1Bar| 25"
(7i) the integral identity
| V5.0 dete [ (V5T dv. = [ fods
Q o Qo

¢ [ fodvot1or] [ updie forall we D) (16)
(951 D

is valid for any prototype § € Hg(D) of function y € H}(Q,TP) (see Remark 4.1).
Here &€ = o?(AF).
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~

—_
—

—

As follows from Theorem 2.2, the OCP (4.5) admits a unique optimal pair (72,7) €
L3(D,dpe) x H}(Qe, PY) for every fixed ¢ > 0, f € L*(D), and yaq € L*(Q).
Moreover, in view of the relation (4.4) we see that

EC

R [l Sy

+ 042(AF)||V§eo||2L2(Ql,dV€)2 >C [||U£H%2(D,dus) + ||v@\50‘|%2(90)2 + vaaOH%%Ql,dys)H ;
where 70 € H}(D) is a prototype of y¢ in the sense of Remark 4.1, and
C = min {1,|Agp], \aZ(AF)]} .

Hence, due to the estimate (2.19), we have

—

sup 1wl 2 (p gy + VTN 252002 + vagﬂzm(gl,d,,s)z}
€

-1 0 0 2
<07t (sup [Ilae) + 198 oo
£

1+ \/50—1 <; + 3 diam? D>]>2 . 47)

is uniformly bounded in the scale of variable spaces

19))
< o2 (diamDHf!L2<D>)2+<ﬁ*

Thus, the sequence {(u?, V@g)}sﬁo

L*(D,dp.) x L*(Q0)? x L*(Qy, dv.)%

Let us recall the definition and the main properties of the weak and strong convergence in
the variable L?- space [14].

5. Convergence in Variable Spaces

By a non-negative Radon measure on Q C R? we mean a non-negative Borel measure
which is finite on every compact subset of (2. The spaces of all non-negative Radon measures on
Q will be denoted by M (£2). According to the Riesz theory, each Radon measure p € M ()
can be interpreted as element of the dual of the space Cp(£2) of all continuous functions
vanishing of infinity. If p is a non-negative Radon measure on Q, we will use L2(€,du) to
denote the usual Lebesque space with respect to the measure p with the corresponding norm

1/2
1l 220,40 = (/ﬂ !f(x)|2du> .

Let {jc}e>0 and p be Radon measures such that p. — g in My (), i.e.

e—0

lim [ pdu. = / odp Vo € Co(R?).
Q Q
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If we set Q2 = D and, for each € > 0, define the measure u. as follows:
le = Vs,  where v, is given by (3.7),
then p. — pin M, (D) with du = Ofzo—0} dz1dT2 (3€€ Proposition 3.1). At the same time, if
Q = Q; and p. are defined by (3.6), then (see Proposition 3.2) pe — 0 in M4 ().

Let us recall the definition and main properties of convergence in the variable L?-space.

1. A sequence {v. € L*(9, d,ug)} is called bounded if

limsup/ [ve|? dpe < +o0.
Q

e—0
2. A bounded sequence {v. € L*(€, dpc)}es0 converges weakly to v € L2(Q, du) if
lim [ vepdupe = / vpdu Vo e C3().
e—0 0 0]
and it is written as v. — v in L?(€, du.).

3. The strong convergence v. — v in L?(Q, du.) means that v € L2(€2,du) and

e—0

lim [ vow.dy. = / vwdy as  we —w in LQ(Q7 dite).
Q Q
The following convergence properties in variable spaces hold:

(a) Compactness : if a sequence is bounded in L?(£2,du.) then this sequence is relatively
compact in the sense of the weak convergence;

(b) Lower semicontinuity : if v, — v in L?(Q, dyu.) then

hmlnf/ |ve|? dpe > /]v|2d,u,

(¢) Strong convergence : v, — v if and only if v. — v in L?(€, du.) and

hm/ lv-|? dpe = /|v\2d,u

6. Asymptotic Analysis of Parametrized OCP (2.1)—(2.3)

In order to study the asymptotic behaviour of the OCP (2.1)-(2.3) as € — 0, the passage
to the limit in (2.14) as ¢ — 0 has to be realized. It is worth to notice that the expression



ASYMPTOTIC ANALYSIS OF OCP IN DOMAIN WITH A ROUGH BOUNDARY 21

"passing to the limit" means that we have to find a kind of "limit cost functional" I and the
"limit set of constraints" = with a clearly defined structure such that the limit object

<( inf Is(u,y)> =30 <( inf I(u,y)> (6.1)

u?y)EEE u7y)€E

can be interpreted as some OCP.
Sinse for each € > 0 the OCP (2.1)—(2.3) lives in the corresponding functional space (see
(4.5)) L*(D,du.) x H}(Q;TP), we begin with the definition of the convergence (6.1).

Definition 6.1. We say that a bounded sequence of feagible pairs {(us, ye) € és} o-converges
to a pair (u,y) as € — 0, if

[u—

.u€L?0,L); y¢€ H&(Qo;rD)§

2. u. — u weakly in L2(T'Y, du.);

3. U= — y weakly in H{ (D) for any prototypes y- € H} (D) of y. € HE(Qg; TP);
4. y =1y a.e. in Q.

Remark 6.1. Let us show that this definition is meaningful. Indeed, the boundedness of the
sequence

{(Usays) € ée - LQ(Dadﬂs) X H&<Q€5FD)}E>O

implies that

sup [|ue |2 (p .y < +00, sup ”yﬁ-?HH(}(QE;FD) < +o0. (6.2)
e>0 e>0

Hence, there exists an element u € L?(D,du) and a sequence of prototypes {7. € H}(D)}
such that (up to a subsequence) u. — u in variable space L?(D, du.) and

sup |17 | 73y < +oc- (6.3)
e>0

Then the inclusion v € L?(0,L) is a direct consequence of the definition of the measure
dp = 0fz,—0y dx1, whereas the condition (6.3) implies the existence of § € Hg(D) and a
subsequence of {U:}e~0 C H}(D) such that

- —7y in H}(D) as €—0
Hence, § € H} (Q0;TP).
Let us show that the o-limit pair (u,y) € L?(0, L) x H}(0; T'P) is unique for any bounded
sequence {(u67 Ye) € Eg} o To begin with, we note that the property v, — v = 0 weakly in
e>
M(R?) leads to the relation (see (3.18) and (4.3))

. 1 . 00 (T2
;1_{% - pdve = m 21_1}}) 5 p(z)xan(z)de =0, Vo e C°(R7) (6.4)
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i.e., in other words, we can deduce that
Xawao = Xxp in L*(D). (6.5)

(Here, we use the fact that the set C§°(R?) is dense in L?(D)).
On the other hand, we see that

as €—0

aslam = [ o @Pde= [ o) de® 50
{by (6.4) for ¢ =1in D}
= xoll2(py- (6.6)
(D)

Since the weak convergence in L?(D) and the convergence of norm (6.6) imply the strong
convergence in L%(D), we obtain

Xa.-q, — 0 strongly in L*(D). (6.7)

In order to prove the uniqueness of the g-limit, it is enough to show that this limit does not
depend on the choice of prototypes sequence. Indeed, let {(ua,yg) € EE} be given bounded

sequence. Let {¥:}e~0 and {g:}->0 be two differen sequences of prototypes for elements {y. €
H(Q:;TP)}. So it is plausible to assume that

ge—y in Hy(D) (6.8)
ge—g in Hy(D).
Our aim is to show that y(x) = g(z) almost everywhere in Q. With that in mind, we set

¢ =Vy—VgeL*D)>

Then, for every € > 0 we have the following chain of equalities
17 =914 oy = [ IV~ Vil*de
0( 0, ) QO
— /Q (V7 — VG, E)ge da = /D (Vi) — Ve, ) da
0

+ / (Vi — V5, &) da + / (Vi )z da
D Q

1

-/ (95 O d - [ (5.6

Q
+ [ (V3 O det | (V5 Ve da
:Il(E)—i-IQ(&)—i-Ig(E)—L;(E) —[5+16+I()(€), (6.9)

where

Io(e) = /Q (Vi — Vi, €)ge d = 0
0
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by definition of prototypes.
Hence, passing to the limit in (6.9) as ¢ — 0, we get

15~ 33 gy = i T1(e) + i To(e) + lim (Ta(e) — Is) — lim (Ta(e) — T) = 0

e—0

because of the weak convergence (6.8). Thus, 7 = g as elements of H}(Q0;TP).

As a result, following the scheme of the direct variational convergence (see P.Kogut &
G. Lengering [11]), we adopt the following definition for the convergence of minimization
problems (6.1) in variable spaces.

Definition 6.2. The constrained minimization problem <inf (uy)ez 1 (u, y)> is the variational
o-limit of the sequence {<i]{1f(u’y)63E I.(u, y)> i€ — 0} as € — 0 if the following conditions hold
true:

(a) If the sequences {e }ren and {(ug, yx)}pen are such that e, — 0 as k — oo,

(up, yr) € Zep, VE €N, and (ug, yi) = (u,y) in L2(D, dpe,) x HE(Qe,;TP), then

(u,y) € 2 and I(u,y) <liminf I, (ug, yg)- (6.10)
k—o0

(aa) For every (u,y) € Z there exists a sequence {(ue,¥:)}.~ (called a I'-realizing sequence)
such that

(ue,ys) € Ec Ve >0, (ug,yE) (u,y) and I(u,y) > limsup Ic(ue,y:). (6.11)

e—0

Taking into account this definition, let us show that the constrained minimization problem

< inf [(u,y)>, (6.12)
(u,y)EE
where
A
) =220 [Tl ds G [ 00) = puate))? do
0
we L*(0,L); ye Hy(Q;TP);
lullz20,0) < |Agr|~1/2B%;
2=1 (u,y)

L
/(Vy,th)dex—/ fgod:c+AaF]/ (0, s)u(s) ds
Qo Qo 0

for each ¢ € C§°(D)

is the variational o-limit of (2.14) as € — 0.
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Verification of condition (a). Let {ef }ren and {ug, yr }ren be such that e, — 0ask — oo,
(up,yr) € Z-, Yk €N, and (up,yr) > (u,y) in variable space L2(D, dpe, ) x H} (e, ;TP).
Let us show that (u,y) € =. Indeed, the conditions u € L%(0,L) and y € H}(Q0;TP) are
immediately follows from the definition of o-convergence. Since (ug,yr) € =, for k € N, it
follows that (see (4.4) and (4.6) )

2D,y < [Dor|™/28%, Yk €N, (6.13)
/ (Vi Vo)ge dx + o*(Ap) / (VUk, Volge dve, = | fodz
Qo (921 Qo
+a2(Ap) /Q Fodve, + | Dol / wppdite,, Vo€ CE(D),VEEN.  (6.14)
1 D

Then the lower semi-continuity property of the weak convergence up—u in L?(D, dy., ) implies
U < liminf ||u < |Agp| 128"
lullz2(0,0) < m in lukllr2(p,dp., ) < [Dor|™ /78

It remains to pass to the limit in (6.14) as k — oo. With that in mind, we note that

lim (Vy, Vo)gz do = / (Vy, Vo)re dz by o-convergence (ug, yr) — (u,9);
k—o0 Q0 Qo

L
lim / U dfie, —/ wp dp —/ u(z)p(x,0)dx by up — win L*(D,du.,) ;
k—o0 D D 0

o*(Ap) im [ (Vi Vo)ge dve, = lim [ (Vik, xa.\0, V)R2 do

k—o0 0 k—o0 o

(as a product of weak and strong convergent sequences in L*(€;)?)
=/ (VY, Vp)rzxp dz = 0.
1951
By analogy with the previous case, we have

o2 (AR) fedve, F2p00.
951

Gathering together relations given above, we arrive at the following limiting integral identity

L
/ (Vy, Vo)pe dx = / fodz + |Asp| / up(s,0)ds, Yy e C°(D).
Qo Qo 0

As a result, we have (u,y) € Z.

As for the inequality (6.10), it immediately follows from compactness of the embedding
H(Q0;TP) < L?(Qp) and the lower semi-continuity property of the norm |- H%Q(D’d#g) with
respect to the weak convergence in L?(D;du.). Indeed, in this case we have

lim [ (yx — Yaa)? do = / (Y — Yaa)? d,
k—o0 Qo Qo

L
lim | u}dpye, 2/ u2du:/ u?(s)ds.
k—o0 D D 0
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Verification of condition (aa). Let (u,y) be an arbitrary feasible pair to the problem (6.12),
ie (u,y) € =. Before we will construct a I'-realizing sequence, we define the sequence

{v. € L*(D,dp.)}

£>a

as follows
L
/D vepdpte = /D u()e dj = /0 u(s) () (5, 0) ds (6.15)

Here, (¢)e is determining by the rule

/sodua=/(so)adu Vo € C5°(R?)
D D

Taking into account the definition of measures p. and p, we see that

/D(@)a dp = /OL ® <x1 —¢F (%)) dxy (6.16)

ve —u strongly in  L*(D,dpu.). (6.17)

Let us show that

With that in mind, we make use of the following estimate

</D(<P)sudu>2 < (/D u? du) (/D(cp)g du> = const /D(gp)g dp.

In view of (6.16), we can rewrite this inequality as follows

2
< / (w)eudu> < const / ©” dpe
D D

Hence, by Rietz Representation Theorem, there exists a function v, such that

/vssodﬂaz/ u(p)edp V€ C5°(R?)
D D

and /vegpdug < Veonst|ol|L2(p,ap.)- (6.18)
D
Since .
A (S
du = —eF(-))d
/DU(so)s f /OU(S)w(s, € (6)) 5
and

lim sup |p(s, —eF <§)) —p(s,0)] = 0,
e=00<s<, £

it follows from (6.18) that

L
lim vggodugz/ u(s)p(s,0) ds:/ up du,
e—0 D 0 D

ie v.—u weaklyin L*(D,du.).

(6.19)
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To conclude the proof of assertion (6.17), it is enough to recall that, by the Rietz Representation

Theorem, we have
/ v? dp. < / u?dp (6.20)
D D

Since, by the lower semi-continuity property (b),

/ u? dp < lim inf/ U? dpe,
D e—0 D

it follows from (6.20) that

lim [ v2dp. = / u® dp (6.21)
e—0 D D
Thus, the strong convergence (6.17) is a direct consequence of (6.19) and (6.21) by property(c)
of the weak convergence in variable spaces.
Let B. be the ball in L?(D, dp.) centered at the origin and with radius |Agg|~'/26%, i.e.

B. = {v e LD, duc) : vl 2(pauey < |1Bor| 25}

Let P.: L?(D,du.) — Be be the orthogonal projection operator, which can be defined as

follows
v, if vée B
P(v) = { Argmin ||v — otherwise.

For every £ > 0 we set u. = P-(v.), where v, is given by (6.15), and y. € H} (Q:;TP) is a
weak solution to the boundary value problem (2.2) with u = w..

Let us show that {(ue,y:)}.( is a I-realizing sequence in the sense of (6.2). Indeed, as
it was shown in Theorem 2.1 , for every u. € L?(D,dp.) (and, therefore,u € L*(T'Y)) there
exists a unique solution y. € Hg(Q,T'P) for which the a priori estimate (2.19) holds true. In
particular, if . € HZ (D) is a prototype for ., then

2
W22 (D ey

1Vl 0y < Cllyell g .irr)

by

—~

<" & | diam D- | fll o) + 5 (1 + \/50 <; + 3 diam? D>>] L Veso.
(6.22)

As for the controls u. = P-(v.) Ve > 0, we see that u. € B. C L?(D, du.), and, therefore,

el 2Dy < 1Aor|H28%, Ve >0, (6.23)

Thus, the sequence {(u., ye)}.. is bounded in L?(D, du. ) x H} (D). Therefore, we can suppose
that there exists a subsequence of {(uc,¥:)}.~ o (still denoted by the same suffix €) and a pair
(u*,y*) € L*(D,du.) x H}(D) such that

u.—u* in L*D,du.), and g.—y* in Hi(D) as e —0.
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and (u*,y*) is subjected to the estimates (6.22) and

|l 2D,y < 1Dor| =257

To begin with, let us show that v* = w. With that in mind, we make use the following obvious
properties:

(i) (p): — @ strongly in L2(D,du.) Ve € CSO(RQ) :

(ii) v. — v strongly in L?(D,du.), hence,

/ v? dpe — / u?dp  (by definition of the strong convergence);
D D

(iii) Since [ u? dp < [Agp|(B*)?, it follows from (ii) that there exist a numerical sequence
{0 }e—0 such that

Hv8||L2(D7dus)S\Aaplflﬂﬁ*—i—é& Ve>0 and 6. —0 as e — 0;

(iv) For each p € C§°(R?), we have

2
60 B = [ (@2 < [ (sup (o) da
D D \xz€D
~ lpliny [ die = (D) Il < Comst Il

(v) By definition of the orthogonal projection operator P. : L?(D,du.) — B:, we have

P.(ve) = peve, where . = min {17 W}
HUEHLQ(D,duE)
(vi) In view of item(v),
) = Ve = 1 [lvell L2 (D dpe)
by i) | Aor| 2B

||Ua||L2(D,du5)

| P (ve) — ”a”L2(D,dus

1 Mvell 2(p,dpe)

= [ll0ell 22Dy — 120mI/28"

< \A3F|_1/25* + 6 — |A3F]_1/26* =0.—>0 as e—0.

Taking these properties into account and choosing an arbitrary function ¢ € C§° (R?), we

get
A:Z/DU*(sO)edu—/DU(w)edu

:/ U*(‘P)Edﬂ/ UE(‘P)EdH6+/ us(@)sd/‘s/ Ua(@)sdﬂs
D D D D
+ [ vd)edne— [ vpdu =T+ 15
D D
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where
i = [ wedn= [ uw.du
D
=/ updp — /uesoduer/U*((so)s—cp) du+/Due[s0—(s0)5] dyie
=Ji+J5+J5—=0 as €—0
because

e J5 — 0 by the weak convergence u.—u* in L*(D, du.);

o J5 < |[u*|l2(p,awll(¢)e = @llz2(p,au) — 0 by the properties of smoothing operator;

IN

o 55 < (sl )9 — (D)) < Constsupecp (o) = (2):(2)] 0
3

Const
by the properties of smoothing operator.

As for the rest terms in A, we have

15 < (sup loel2aun ) 1) = Pl 0
&€
(by analogy with the previous case);

I5 = /DPg(vg)(go)g dpe — /Dve(cpe)dua < |1P:(ve) = vellL2(D,dpoy l1#llo(me)- Const

by (iv)
< dllellomey Const =0 as e — 0.

Thus, we finally arrived at the following relation

/u*gpd,u:/ wpdp  for every o € C5°(R?),
D D
which implies

uw*=wu in L*D,du).

Since this inference is valid for any cluster point u* of the sequence {u.}.~o with respect to
the weak convergence in L?(D,dpu.), it follows that u € L?(D,dpu) is the weak limit for the
entire sequence {u }e>0.

Our next step is to show that

: 2 2
Vi (e [l72(p ap.) = lllze(o a0 (6.24)
where

Ue = Pove = yeve, Ve >0,
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and v, is related with u by (6.15) and, therefore, v. — u strongly in L?(D, dp.).
Indeed,

HU6HL2(D,duE) = || P-(ve) — ve + veHLQ(D,dpE) < || P(ve) — 'UeHLQ(D,dME) + ”U6||L2(D,dp5)-

Then

(| Pz (ve) — U€||L2(D,d,u5) <d. = 0 by property (vi),
and  [|vel|2(p.dp.) = lullz2(p.au) by property (ii).

Hence, relation(6.24) is valid.

It remains to show that y* = y as element of H(Qo;'p) and this equality holds for any
cluster point y* of the sequence {7.}.., C H} (D).

Indeed, as follows from definition of the elements 7., the following integral identity (see
for comparison (6.14))

/ (VYz, V)p2 dx + oz2(Ap) / (Vy-, V) dve
Qo Ql

= fgodx+a2(AF)/ fgodu5+|A3F|/u€g0duE (6.25)
Qo (91 D

holds true for every test function ¢ € C§°(D) and any € > 0.

Using the fact that (u.,y.) = (u,y*) and applying the similar argument as we did it before
(see the substantiation of the limit passage in (6.14)), we can pass to the limit in (6.25) as
e — 0. As a result, we arrive at the integral identity

L
/ (Y, Vp)as d = / fodr+ | Dor] / u(s)p(s, 0) ds,
Qo ) 0

which is valid for every ¢ € C5°(D).
Hence, y* is a weak solution to the limit boundary value problem

—Vy:f n Qo,

Yy = 0 on FD = aQO \ FN, (626)

0
%:umaﬂ on FN:{(5151,332)’5112:0,0<961<L)}-

Since, by Lax-Milgram Theorem, this problem admits a unique weak solution in Hg(Qo,'?)
and the pair (u,y) belongs to the set = (see (6.12)), it follows that for a given control u €
L?(0, L), we have

y* =y aselements of H}(Q,Tp).

It remains to notice that this conclusion is valid for any cluster point y* of the sequence
{{U\s}a>0 C H&(D) Thus,

(ue, ye) 2 (u,y) as e—0 and (u,y) €=,
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i.e {(ue,Ye)}es0 is a I'-realizing sequence.
To conclude the proof of item (aa), we make use of the following observation:

A A
PAYY 2d sj>O| oF|

)ds  by(6.24)

and

« 0«
o / (ya - yad)2 dx 63 5 (y - yad)2 dx
2 Ja, 2 Ja,

by compactness of the embedding HE(Q9, T'P) < L2(y). Thus
lim 7 =17
El_rf(l) 6(“5;96) (u,y)

and this concludes the proof of (aa)-property of Definition 6.2.

It other words, we have shown that the constrained minimization problem (6.12) is the
variational o-limit of the sequence (2.14) as ¢ — 0. Moreover, as immediately follows from the
structure of the cost functional I(u,y) and the set of admissible pairs =, the problem (6.12)
can be recovered in the form of the following optimal control problem:

Minimize

I(u,y |A8F‘ / s)ds + — / (Y — Yaq)? da (6.27)
Qo

subjected to the constraints

_vy:f in QO7
y=0 on TIp,

0
—y:u\Aaﬂ on FN,
on

lullz2(0,) < |Aop| 1287,

(6.28)

where I'V = {(21,0)|]0 < z; < L}, TP = 99 \ |TV.

To conclude this section, it is worth to note that the limit OCP (6.27)-(6.28) has a unique
solution (ug,yo) € L%(0,L) x HE(Qo;TP) (see Fursikov [7]) and this solution possesses the
following remarkable property:

Theorem 6.1. Let (ul,y?) € L2(TY) x H(Q:,T'P) be an optimal pair to the original OCP
(2.1)-(2.3). Then

(w0, ) % (u®, %) € L2(0, L) x H} (<, T”)
I(°,y") = hmu@yS).

For the proof of this result, we refer to Kogut & Lengering (see Theorem Th 5.3, p.142
n [11]).
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Properly speaking, this result reveals the way for the construction of suboptimal controls
to OCPs in domains with rough boundaries. In particular, we can consider as a suboptimal
control to the problem (2.1)—(2.3) the following one:

A —1/2 g%
u™ = P.(v?) = min < 1, 1Bop|7 775" 08F| b v,
Hvs HLQ(D,d,uE)

where v0 € L?(D, dpu.) is the lift of optimal control to the limit problem (6.27)-(6.28), which
can be defined by the rule

L
20 = ud = u¥(s s s > (R?).
[ odie= [ o). d /0 (5)(9)e(5,0) ds Y € CF(B?)
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