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Abstract

We study the asymptotic behaviour of an optimal boundary control problem for az linear

elliptic equation in two-dimensional domain Ωε with mixed types of boundary conditions. We

assume that the boundary of domain Ωε contains a highly oscillating part with respect to ε,

and we suppose that the control in�uence is realized via the Neumann boundary condition

posed on the highly oscillating part of boundary. We present some ideas and results concerning

the asymptotic analysis of such problems as ε → 0 and derive conditions under which the

homogenized problem can be recovered in an explicit form. We show that the mathematical

description of the homogenized optimal boundary control problem is di�erent from the original

one. These di�erences appear not only in the limit cost functional, geometry of a limit domain,

and Neumann boundary conditions, but also in the control constraints.
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1. Introduction

In this paper we are concerned with the following optimal control problem for linear
elliptic equation in two-dimensional domain with mixed (Neumann and Dirichlet) boundary
conditions

Iε(u, y) =
1

2

ˆ
ΓN
ε

|u|2 dH1 +
α

2

ˆ
Ω0

|y − yad|2 dx −→ inf (1.1)
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subjected to the constraints

−∆y = f in Ωε,

y = 0 on ΓDε ,
∂y
∂n = u on ΓNε ,

}
(1.2)

u ∈ U ε∂ =
{
v ∈ L2

(
ΓNε

)
: ‖v‖L2(ΓN

ε ) ≤ β∗
}
. (1.3)

Here, α > 0, β∗ > 0, f ∈ L2(D) and yad ∈ L2(Ω0) are given functions,

Ωε =

{[
x1

x2

]
∈ R2

∣∣∣ 0 < x1 <L

−εF̃
(
x1
ε

)
< x2 < Φ(x1)

}
,

D =

{[
x1

x2

]
∈ R2

∣∣∣ 0 < x1 <L
−1 < x2 < Φ(x1)

}
,

where L ∈ R is a positive value,Φ ∈ C1 ([ 0, L]) and F ∈ C1
0 ( 0, 1) are given functions such

that

Φ(x) > 0, ∀ x ∈ ( 0, L), F (y) ∈ [0, 1], ∀ y ∈ [0, 1],

y 7→ F̃ (y) is 1-periodic extension of the function F : [0, 1] → [0, 1], and ε is a small positive
parameter.

We study the asymptotic behaviour of the optimal control problem (1.1)�(1.3) as the
parameter ε tends to zero. The characteristic feature of this problem is the fact that the
boundary ∂Ω of domain Ωε, where the boundary problem is posed, contains the very highly
oscillating part with respect to ε, as ε→ 0. We consider the optimal control problem assuming
that the control in�uence is realized via the Neumann boundary condition posed on the highly
oscillating part of boundary.

Boundary value problems in domains with highly oscillating boundary are prototypes of
widely used engineering constructions as well as many other physical and biological systems
with very distinct characteristic scales. The computational calculation of the solutions of these
problems is very complicated due to the geometry of such domains. Indeed, increase in the
size of computational domains naturally leads to longer computing time and makes it very
di�cult to keep an acceptable level of accuracy. Therefore, asymptotic analysis is one of the
main approach to study of boundary value problems in such domains.

We would like to emphasize that in contrast to the approach of Kesavan & Saint Jean
Paulin [9] and [10], Saint Jean Paulin & Zoubairi [12] and Conca, Osses & Saint Jean Paulin [4]
we do not just look for a limit of optimal control functions and for a limit of minimal values of
the cost functionals. Rather, we stay with the optimal control problem in the original sense and
look for a homogenized problem as some variational limit of the original one. This limiting
problem should be unique (as a result of some passage to the limit), and should preserve
the well known variational properties such as the convergence of both optimal solutions
and minimal values of a cost function and, of course, should �nally have a clearly de�ned
structure including the limit form of a state equation, control and state constraints, a limit
cost functional, and should be de�ned in a "simpler" domain. Our approach, the so-called
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"direct approach" of calculus of variations, is based on ideas of the theory of Γ-convergence
and the concept of variational convergence of constrained minimization problems [11] and its
variational properties. The analysis is very much in the spirit of Attuoch [1] and Buttazzo &
Dal Maso [2, 3].

Using the ideas of the Γ-convergence theory and the concept of the variational convergence
of constrained minimization problems, we show that the homogenized problem for the original
one can be recovered in the following analytical form:

I(u, y) =
|∆∂F |

2

ˆ L

0
u2(s) ds+

α

2

ˆ
Ω0

(y − yad)2 dx =⇒ inf (1.4)

subjected to the constraints

−∆y = f in Ω0,

y = 0 on ΓD,

∂y

∂n
= u|∆∂F | on ΓN ,

u ∈ U∂ =
{
v ∈ L2

(
ΓN
)

: ‖v‖L2(ΓN
ε ) ≤ |∆∂F |−1/2β∗

}
,


(1.5)

where ΓN = {(x1, 0)| 0 < x1 < L}, ΓD = ∂Ω0 \ |ΓN , and |∆∂F | is the 1-dimentional Hausdor�
measure of the arc segment {x2 = −F (x1) : 0 ≤ x1 < 1}, i.e.

|∆∂F | =
ˆ 0

1

√
1 + [F ′(x1)]2 dx1.

2. Statement of the Problem and Some Preliminaries

We de�ne a bounded open subdomain Ω0 of R2 as follows

Ω0 =

{[
x1

x2

]
∈ R2

∣∣∣ 0 < x1 <L
0 < x2 < Φ(x1)

}
.

In order to describe the domain Ωε with a rough boundary, we set (see Fig.1)

Ω1 =

{[
x1

x2

]
∈ R2

∣∣∣ 0 < x1 <L
−1 < x2 ≤ 0

}
, D = Ω0 ∪ Ω1.
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Fig. 1. Example of D-domain

We say that Ωε is a domain with rough boundary if

Ωε =

{[
x1

x2

]
∈ R2

∣∣∣ 0 < x1 <L

−εF̃
(x1

ε

)
< x2 < Φ(x1)

}
,

where it is assumed that y 7→ F̃ (y) is 1-periodic extension of the function F : [0, 1] → [0, 1],
and ε is a small parameter (see Fig.2).

Remark 2.1. Here in after we suppose that ε varies in a strictly decreasing sequence of positive
numbers which converges to zero and such that Nε = L/ε are integers. So, when we write
ε > 0, we consider the elements of this sequence only.

Fig. 2. Example of domain Ωε

Let ∂Ωε be the boundary of Ωε. It is clear that the following decomposition of ∂Ωε holds
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true

∂Ωε = ΓNε ∪ ΓDε ,

where

ΓNε ∩ ΓDε 6= ∅, ΓNε = ∂Ωε ∩ Ω1,

ΓDε = ∂Ωε�ΓNε =



[
0
x2

]
, ∀ 0 ≤ x2 ≤ Φ(0),[

x1
x2

]
, ∀ 0 ≤ x1 ≤ L, x2 = Φ(x1),[

1
x2

]
, ∀ 0 ≤ x2 ≤ Φ(L).

It is worth to note that the part of boundary ΓNε has a such type of oscillations that the ratio
of its amplitude to the period of oscillation remains bounded as the small parameter ε tends
to zero.

The optimal control problem, we are going to consider in Ωε, is to minimize the cost
functional

Iε(u, y) =
1

2

ˆ
ΓN
ε

|u|2 dH1 +
α

2

ˆ
Ω0

|y − yad|2 dx (2.1)

subjected to the constraints

−∆y = f in Ωε,

y = 0 on ΓDε ,

∂y

∂n
= u on ΓNε ,

 (2.2)

u ∈ U ε∂ =
{
v ∈ L2

(
ΓNε

)
: ‖v‖L2(ΓN

ε ) ≤ β∗
}
. (2.3)

Here, α > 0, β∗ > 0, f ∈ L2(D) and yad ∈ L2(Ω0) are given functions.

Let H1
0 (D) be the classical Sobolev space de�ned as the closure of C∞0 (D) with respect

to the norm

‖ϕ‖H1
0 (D) =

(ˆ
D
|∇ϕ|2 dx

)1/2

.

Since Ωε ⊂ D and ΓDε ⊂ ∂D for all ε > 0, we set

H1
0

(
Ωε; ΓD

)
=

{
y
∣∣∣
Ωε

: ∀ y ∈ H1
0 (D)

}
,

where the index ε has been omitted in ΓD because this part of boundary does not depend on
ε > 0.
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Remark 2.2. Taking the de�nition of H1
0 (Ωε; ΓD) into account, we can always associate every

function y ∈ H1
0 (Ωε; ΓD) with its prototype ŷ ∈ H1

0 (D) such that

ŷ(x) = y(x) a.e. in Ωε, Ĉ‖y‖H1
0 (Ωε;ΓD) ≥ ‖ŷ‖H1

0 (D),

where

‖y‖2H1
0 (Ωε;ΓD) =

ˆ
Ωε

|∇y|2 dx, ‖ŷ‖2H1
0 (D) =

ˆ
D
|∇ŷ|2 dx,

and the constant Ĉ depends on Ω0 and ‖y‖H1
0 (Ωε;ΓD).

De�nition 2.1. We say that a pair (uε, yε) is feasible to the problem (2.1)�(2.3) if

uε ∈ U ε∂ ; yε ∈ H1
0 (Ωε; ΓD)

and the integral identity
ˆ

Ωε

(∇yε,∇ϕ) dx =

ˆ
Ωε

fϕ dx+

ˆ
ΓN
ε

uεϕdH1 (2.4)

holds true for each test function ϕ ∈ C∞0 (D).

Let Ξε be the set of all feasible pairs to the problem (2.1)�(2.3). We begin with the
following result.

Theorem 2.1. For every ε > 0, f ∈ L2(D), and u ∈ L2(ΓNε ) there exist a unique solution

y ∈ H1
0 (Ωε; ΓD) to the boundary value problem (2.2) such that

‖y‖H1
0 (Ωε;ΓD) ≤ diamD‖f |‖L2(D) +

√
δ−1

0

(
1

2
+ 3 diam2D

)
‖u‖L2(ΓN

ε ) , (2.5)

where diamD is the Euclidean diameter of D, i.e.

diamD = sup
η∈D
|ξ − η|R2 , and δ0 =

1√
1 +

(
supxx∈[0,1]|F ′(x)|

)2 .
Proof. Since the set C∞0 (D) is dense in H1

0 (D), it follows that the integral identity (2.4) can
be extended (by continuity) to the test functions ϕ ∈ H1

0 (Ωε; ΓD). As a result, relation (2.4)
leads us to the following variational statement of BVP (2.2):

Find y ∈ H1
0 (Ωε; ΓD) such thatˆ

Ωε

(∇y,∇z)R2 dx =

ˆ
Ωε

fz dx+

ˆ
ΓN
ε

uγ0(z) dH1, ∀z ∈ H1
0 (Ωε; ΓD), (2.6)

where γ0(z) stands for the trace operator.
Let us show that the right hand side of (2.6) is a linear continuous functional with respect

to z ∈ H1
0 (Ωε; ΓD). Indeed,
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ˆ
Ωε

fz dx ≤ ‖f‖L2(Ωε)‖z‖L2(Ωε) ≤ ‖f‖L2(D)‖z‖L2(Ωε) ≤ (by Friedrix inequality)

≤ ‖f‖L2(D)C‖∇z‖L2(Ωε)2 = C‖f‖L2(D)‖z‖H1
0 (Ωε;ΓD), (2.7)

with C = diam Ωε ≤ diamD.
As for the second term in (2.6), we note that the well-known trace theorem for Sobolev

spaces states that, for a Lipschitz continuous domain Ωε, there exists a unique linear continuous
map, called the trace operator,

γ0 : H1
0 (Ωε)→ H1/2(ΓNε )

such that

1. for any y ∈ H1
0 (Ωε) ∩ C0(Ωε) one has γ0(y) = y

∣∣∣
ΓN
ε

;

2. the following inequality

δε‖γ0(y)‖2L2(ΓN
ε ) ≤ ‖µε‖C1(Ωε)

(
σ1/2‖∇y‖2L2(Ωε)2 + (1 + σ−1/2)‖y‖2L2(Ωε)

)
(2.8)

holds true for all σ ∈ (0, 1) and y ∈ H1
0 (Ωε; ΓD), where µε is a vector �eld on Ωε such

that

µε ∈ C1(Ωε;R2), (µε, nε)R2 ≥ δε on ΓNε ,

nε is the outer unit normal vector.

For the details, we refer to P. Grisvard [8, Th. 1.5.1.10].

Fig. 3.
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To begin with, let us show that there exists a positive constant δ0 such that

(µ, nε(x))R2 ≥ δ0 for each x ∈ ΓNε (2.9)

and δ0 is independent of ε, where µ =
[

0
−1

]
. Indeed, let x∗ be an arbitrary point of the

boundary ΓNε . Following the de�nition of ΓNε , we may suppose that

x∗ = ε(k + y),

where k ∈ Z is an integer, and y ∈ [0, 1].
Then the tangent vector to ΓNε at x can be represented as follows (see Fig.3)

ν(x∗) =

 1
d
dx

(
−εF̃

(
x
ε

) ∣∣∣
x=x∗

) =

[
1

−F̃ ′(x∗ε )

]
=

[
1

−F̃ ′(k + y)

]
=

[
1

−F ′(y)

]

(because of the 1-periodicity of the function F̃ ).
Hence,

nε(x
∗) =

1√
1 +

(
F ′(y)

)2

[
−F ′(y)
−1

]

is the outer normal vector to ΓNε at the point x∗. Taking this fact into account, we deduce
from (2.9)

(µ, nε(x
∗))R2 =

1√
1 + (F ′(y))2

(
−F ′(y) · 0 + (−1) · (−1)

)
=

1√
1 + (F ′(y))2

> 0. (2.10)

Using the fact that F ∈ C1
0 (0, 1), we have

‖F ′‖C([0,1]) = max
0≤y≤1

|F ′(y)| ≤ β

for some β > 0. As a result, we obtain(
µ, nε(x

∗)
)
R2

=
1√

1 + (F ′(y))2
≥ 1√

1 + ρ2
= δ0

for all x∗ ∈ ΓNε and all ε > 0.

Thus, the a priori estimate (2.8) with µε =
[

0
−1

]
and σ = 1

2 , leads us to the following

inequality

δ0‖γ0(y)‖2L2(ΓN
ε ) ≤

1

2
‖∇y‖2L2(Ωε)2 + 3‖y‖2L2(Ωε) ∀ y ∈ H1

0 (Ωε; ΓD). (2.11)

Since ‖y‖L2(Ωε) ≤ diam Ωε‖∇y‖L2(Ωε)2 by Friedrix inequality, it follows from (2.11) that

‖γ0(y)‖2L2(ΓN
ε ) ≤ δ

−1
0

[
1

2
‖∇y‖2L2(Ωε)2 + 3 diam2 Ωε‖∇y‖2L2(Ωε)2

]
≤
√

1 + β2

[
1

2
+ 3 diam2D

]
‖y‖2H1

0 (Ωε;ΓD).

(2.12)
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Hence, the second term in the right hand side of (2.6) can be estimated as follows

ˆ
ΓN
ε

uγ0(z) dH1 ≤ ‖u‖L2(ΓN
ε )‖γ0(z)‖L2(ΓN

ε )

by (2.12)

≤
√

(1 + β2)1/2
(1

2
+ 3 diam2D

)
‖u‖L2(Γε)‖z‖H1

0 (Ωε;ΓD).

Combining this estimate with (2.7), we see that there exists a linear continuous functional

Gε ∈
(
H1

0 (Ωε; ΓD)
)∗

such that〈
Gε, z

〉
(H1

0 (Ωε;ΓD))
∗
;H1

0 (Ωε;ΓD)
=

ˆ
Ωε

fz dx+

ˆ
Γε

uγ0(z) dH1, ∀z ∈ H1
0 (Ωε; ΓD)

and

‖Gε‖(H1
0 (Ωε;ΓD))

∗ ≤ ‖u‖L2(ΓN
ε )

√
(1 + β2)1/2

(
1

2
+ 3 diam2D

)
. (2.13)

It remains to note that the bilinear form

aε(y, z) =

ˆ
Ωε

(∇y,∇z)R2 dx, ∀y, z ∈ H1
0 (Ωε; ΓD)

is continuous and coercive on H1
0 (Ωε; ΓD).

Hence, by Lax-Milgram Theorem, variational problem (2.6) admits a unique solution
yε ∈ H1

0 (Ωε; ΓD) for every u ∈ L2(ΓNε ) and f ∈ L2(D).As for the estimate (2.5), it immediate
follows the energy equality

‖y2‖H1
0 (Ωε;ΓD) = aε(y, y) = 〈Gε, y〉(H1

0 (Ωε;ΓD))
∗
;H1

0 (Ωε;ΓD)
≤ ‖Gε‖(H1

0 (Ωε;ΓD))
∗‖y‖H1

0 (Ωε;ΓD)

and inequality (2.13).

Our next intension is to study the optimal control problem (2.1)�(2.3) that can be repre-
sented as the following constrained minimization problem〈

inf
(u,y)∈Ξε

Iε(u, y)

〉
. (2.14)

With that in mind, we make use of the following observation. Let
{

(uk, yk) ∈ Ξε

}∞
k=1

be an

arbitrary sequence of feasible solutions to (2.1)�(2.3) such that

uk ⇀ u weakly in L2(ΓNε ),

yk ⇀ y weakly in H1
0 (Ωε; ΓD)
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as k tends to in�nity. Let us show that the limit pair (u, y) lies in the set Ξε as well. In other
words, we are going to prove that Ξε is sequentially closed subset of L2(ΓNε ) × H1

0 (Ωε; ΓD)
with respect to the product of the weak topologies of L2(ΓNε ) and H1

0 (Ωε; ΓD).
To do so, we notice that, for each k ∈ N, the following identitiesˆ

Ωε

(∇yk,∇z)R2 dx =

ˆ
Ωε

fz dx+

ˆ
ΓN
ε

ukγ0(z) dH1 (2.15)

hold true for every z ∈ H1
0 (Ωε; ΓD).

Hence, passing to the limit in (2.15) as k →∞, we obtainˆ
Ωε

(∇y,∇z)R2 dx =

ˆ
Ωε

fz dx+

ˆ
ΓN
ε

uγ0(z) dH1, ∀z ∈ H1
0 (Ωε; ΓD)

by de�nition of the weak convergence in L2(ΓNε ) × H1
0 (Ωε; ΓD). Since the boundary value

problem (2.2) has a unique weak solution for each f ∈ L2(D) and u ∈ L2(ΓNε ) (see, for
instance, Theorem 2.1), it follows that the pair (u, y) satis�es the relations (2.2) in weak
sense. It remains to notice that the norm ‖· ‖L2(ΓN

ε ) is sequentially lower semi-continuous with

respect to the weak convergence in L2(ΓNε ), i.e.

lim inf
k→∞

‖uk‖L2(ΓN
ε ) ≥ ‖u‖L2(ΓN

ε ). (2.16)

Since (uk, yk) ∈ Ξε for each k ∈ N, it follows that {uk}∞k=0 ⊂ U εδ . Hence, property (2.16)
gives

β∗ ≥ lim inf
k→∞

‖uk‖L2(ΓN
ε ) ≥ ‖u‖L2(ΓN

ε ), i.e u ∈ U εδ .

Thus, combining the indicated properties of the limit pair (u, y), we can claim that

(u, y) ∈ Ξε,

i.e the following inference is valid:
Claim 1. The set Ξε is sequentially closed with respect to the weak topology of

L2(ΓNε )×H1
0 (Ωε; ΓD).

It is worth to notice that the linearity of boundary value problem (2.2) and the convexity of
the set U εδ imply:

Claim 2. The set of feasible pairs Ξε is convex.
The next observation, we are going to make use of, deals with the boundedness of the set

Ξε . Indeed, let (u, y) be an arbitrary feasible solution, i.e (u, y) ∈ Ξε. Then

‖(u, y)‖L2(ΓN
ε )×H1

0 (Ωε;ΓD) = ‖u‖L2(ΓN
ε ) + ‖y‖H1

0 (Ωε;ΓD)

by (2.3)

≤ β∗ + ‖y‖H1
0 (Ωε;ΓD)

by (2.4)

≤ β∗ + diamD‖f‖L2(D)

+

√
δ−1

0

(
1

2
+ 3 diam2D

)
‖u‖L2(Γε)

≤ β∗ + diamD‖f‖L2(D) + β∗

√
δ−1

0

(
1

2
+ 3diamD

)
< +∞. (2.17)
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The crucial point we would like to emphasize here, is the fact that the estimate (2.17) is
uniform with respect to the small parameter ε > 0. So, the following assertion holds true:

Claim 3. The sets {Ξε} is uniformly bounded in L2(ΓNε )×H1
0 (Ωε; ΓD).

It remains to indicate the lower semi-continuity property of the cost functional Iε : Ξε → R.
Indeed, for an arbitrary sequence {(uk, yk)}∞k=1 ⊂ Ξε such that

(uk, yk)
k→∞
⇀ (u, y) weakly in L2(ΓNε )×H1

0 (Ωε; ΓD)

We have (by the Relich-Kondrashow Theorem)

yk → y strongly in L2(Ωε) as k →∞. (2.18)

Hence,

lim inf
k→∞

Iε(uk, yk) = lim inf
k→∞

1

2
‖uk‖2L2(ΓN

ε ) +
α

2
lim inf
k→∞

‖yk − yad‖2L2(Ω0)

by (2.18)
=

1

2
lim inf
k→∞

‖uk‖2L2(ΓN
ε ) +

α

2
|y − yad‖2L2(Ω0)

by (2.16)

≥ 1

2
‖u‖2L2(ΓN

ε ) +
α

2
‖y − yad‖2L2(Ω0) = Iε(u, y).

As a result, we arrive at the following obvious property of Iε.
Claim 4. The cost function Iε : Ξε → R is strictly convex and lower semi-continuous with

respect to the weak topology of L2(ΓNε )×H1
0 (Ωε; ΓD).

We are now in a position to state the main result of this section. Namely, in view of
the claims 1-4,the following result is a direct consequence of the the well-known theorem of
Calculus of Variations (see A. Fursikov [7], G. Das Maso [5])

Theorem 2.2. For every ε > 0, f ∈ L2(D), and yad ∈ L2(Ω0), there exists a unique pair

(u0
ε, y

0
ε) ∈ Ξε such that

Iε(u
0
ε, y

0
ε) = inf

(u,y)∈Ξε

Iε(u, y).

The main question, we are going to discuss further on, is about the limit properties of the
sequence of optimal pairs {

(u0
ε, y

0
ε) ∈ Ξε

}
ε>0

.

In spite of the fact that this sequence is bounded (see (2.17))

sup
ε>0

[
‖u0

ε‖L2(ΓN
ε ) + ‖y0

ε‖H1
0 (Ωε;ΓD)

]
≤ diamD· ‖f‖L2(D) + β∗

[
1 +

√
δ−1

0

(
1

2
+ 3diam2D

)]
,

(2.19)

the study of the asymptotic properties of
{

(u0
ε, y

0
ε) ∈ Ξε

}
is not trivial. Indeed, for every �xed

ε > 0, the optimal pair (u0
ε, y

0
ε) belongs to the corresponding functional space

L2(ΓNε ) × H1
0 (Ωε; ΓD)
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and this space at level ε varies with ε. So that a preliminary problem is to de�ne the
convergence formalism of sequences of pairs which belong to di�erent spaces. We note that the
way, this convergence should be de�ned, must be quite �exible. As follows from the de�nition
of the set Ωε, we can not rely on the existence of an appropriate space L2(Γ)×H1

0 (Ω) so that
it contains all spaces

{
L2(ΓNε )×H1

0 (Ωε; ΓD)
}
ε>0

and the 'limit' pairs of the sequences in the
indicated scale of variable spaces.

3. Description of the sets Ωε and ΓNε in the terms of singular
measures

We devote this section to the construction of measure-theoretical tools aimed to the
description of the class of feasible solutions to OCP (2.1)�(2.3) in the terms of so-called
singular periodic Borel measure on R2. With that in mind, we follow Zhikov's approach
(see [13]), and introduce the following sets

∆∂F =

{
(x1, x2)T ∈ R2

∣∣∣ 0 ≤ x1 < 1
x2 = −F (x1)

}
(3.1)

and

∆F =

{
(x1, x2)T ∈ R2

∣∣∣ 0 ≤ x1 < 1
−F (x1) < x2 ≤ 0

}
(3.2)

Let µ and ν be periodic �nite positive Borel measures in R2. Let

Y =

{
(x1, x2)T ∈ R2

∣∣∣ 0 ≤ x1 < 1
−∞ < x2 ≤ +∞

}
be the cell of periodicity for µ and ν. We assume that the Borel measures µ and ν are the
probability measures in R2 such that, µ and ν are concentrated and uniformly distributed on
the sets

∆∂F and ∆F ,

respectively. Hence, ˆ
Y
dµ =

ˆ
Y
dν = 1. (3.3)

Remark 3.1. Note that by de�nition µ (Y \∆∂F ) = 0.

Hence, µ is singular with respect to the Lebesque measure L2. Moreover, any functions,
having the same value on the set ∆∂F coincide as elements of L2(Y, dµ). Here, the Lebesque
space L2(Y, dµ) can be de�ned in a usual way with the corresponding norm

‖f‖L2(Y,dµ) =

(ˆ
Y
|f(s)|2 dµ

)1/2

.

Let |∆∂F | be the 1-dimensional Hausdor� measure of the arc {x2 = −F (x1) : 0 ≤ x1 < 1}, i.e.

|∆∂F | =
ˆ 0

1

√
1 + [F ′(x1)]2 dx1.
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Then, by de�nition of µ, we have

ˆ
{
x2=−F (x1)

0≤x1<1

} ϕdH1 = |∆∂F |·
ˆ
Y
ϕdµ (3.4)

for each smooth function C∞0 (R)2.
The similar reasoning can be applied to Y -periodic probability measure ν in R2. In

particular, for any ϕ ∈ C∞0 (R)2, we have

ˆ
{−F (x1)<x2≤0

0≤x1<1

}
=∆F

ϕdx = α2(∆F )

ˆ
Y
ϕdν =

[ˆ 1

0

ˆ 0

−F (x1)
dx2dx1

]
·
ˆ
Y
ϕdν. (3.5)

Remark 3.2. Since α2(∆F ) 6= 0 and

ˆ
∆F

ϕdx =

ˆ
Ω1

ϕ(x)X∆F
(x) dx = α2(∆F )

ˆ
Ω1

ϕdν

for any ϕ ∈ C∞0 (R2), it follows that the measure ν is absolutely continuous with respect to the
two-dimensional Lebesque measure on R2. Here, X∆F

stands for the characteristic function
of the set ∆F , i.e.

X∆F
(x) =

{
1, x = (x1, x2) ∈ ∆F ,

0, otherwise.

Let S be any Borel set in R2. We introduce two scaling measures µε and νε by the rules

µε(S) = εµ(ε−1S) (3.6)

and

νε(S) = ε2ν(ε−1S), (3.7)

respectively. It is clear that the measures µε and νε have the same period εY . Moreover, the
direct calculations show that

µε(εY ) :=

ˆ
εY

dµε
by (3.6)

= ε

ˆ
εY

dµ
( ·
ε

)
by (3.4)

= ε· 1

|∆∂F |

ˆ
ε∆∂F

dH1
( ·
ε

)
=

=
ε

|∆∂F |
·
ˆ{

(x,y)T∈R2

∣∣∣[x=εr, y=−εF (r)
0≤r<1

]} dH ( ·
ε

)
=

ε

|∆∂F |

ˆ 1

0

√
(x′(r))2 + (y′(r))2 d

(r
ε

)
=

ε

|∆∂F |

ˆ 1

0

√
ε2 + ε2 (F ′(r))2· 1

ε
dr =

ε

|∆∂F |

ˆ 1

0

√
1 + (F ′(r))2 dr

=
ε

|∆∂F |
· |∆∂F | = ε· 1 = ε

ˆ
Y
dµ = εµ(Y ) (3.8)
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and

νε(εY ) :=

ˆ
εY

dνε
by (3.7)

= ε2

ˆ
εY

dν
( ·
ε

)
by (3.5)

= ε2· 1

α2(∆F )

ˆ ε

0

ˆ 0

−εF (εx1)
d
(x2

ε

)
d
(x1

ε

)
=

{
x1
ε = y1
x2
ε = y2

}
= ε2· 1

α2(∆F )

ˆ 1

0

ˆ 0

−F (y1)
dy2 dy1 = ε2· 1

α2(∆F )
α2(∆F )

= ε2· 1 = ε2

ˆ
Y
dν = ε2ν(Y ). (3.9)

Let us show that the properties (3.8) and (3.9) imply the weak-∗ compactness of the sequences
{µε}ε>0 and {νε}ε>0 in the space of Radon measures M(R2). It is worth to remind that if
σ is a Borel measure in R2 and σ(K) < +∞ for every compact subset K ⊂ R2, then σ is a
Radon measure (i.e. σ ∈M(R2)).

De�nition 3.1. Let σε, σ be non-negative Radon measures in R2 . Then {σε}ε>0 is called to
be a weakly-∗ convergent to σ as ε→ 0 if

lim
ε→0

ˆ
R2

ϕdσε =

ˆ
R2

ϕdσ for all ϕ ∈ C∞0 (R2).

We begin with the following limiting properties of the singular measures
{
µε = εµ

( ·
ε

)}
ε>0

Proposition 3.1. For every ϕ ∈ C∞0 (R2), we have

lim
ε→0

ˆ
R2

ϕdµε =

ˆ +∞

−∞
ϕ(x1, 0) dx1, (3.10)

that is,
dµε

∗
⇀ δ{x2=0} dx1 dx2 in M(R2), (3.11)

where δ{x2=0}dx1 dx2 stands for the product of the 1-D Lebesque measure dx1 and the Dirac
measure δ{x2=0} dx2.

Proof. Let ϕ ∈ C∞0 (R2) be an arbitrary test function. Let us partition the plane R2 onto the
strips

εYk = εY =

[
k

0

]
, k ∈ Z

of the width ε. Then ˆ
R2

ϕdµε =
∑
k∈Z

ˆ
εYk

ϕdµε =
∑
k∈Z

ϕ(xεk)

ˆ
εYk

dµε

by ε Y -periodicity of µε
=

∑
k∈Z

ϕ(xεk)

ˆ
εYk

dµε

by (3.8)
=

∑
k∈Z

ϕ(xεk)εµ(Y ) =
∑
k∈Z

εϕ(xεk), (3.12)
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where xεk ∈ ε
(

∆∂F +
[
k
0

])
are some points at the arc Ωε ∩ εYk, (the existence of such points

immediately follows from the Mean Value Theorem). To be more speci�c, we set

xεk = (xε1,k, x
ε
2,k)

T ∈ R2

and
xε,0k = (xε1,k, 0)T ∈ R2

for all k ∈ Z and ε > 0. Here, by de�nition of the set ε∆∂F , we have

xε2,k = −ε·F (xε1,k). (3.13)

Since

ϕ(xεk) = ϕ(xε1,k, x
ε
2,k) = ϕ(xε1,k, 0) +

(
ϕ(xε1,k, x

ε
2,k)− ϕ(xε1,k, 0)

)
= ϕ(x0,ε

k ) +
(
ϕ(xεk)− ϕ(x0,ε

k )
)

(3.14)

and

|ϕ(xεk)− ϕ(x0,ε
k )| ≤Mϕ‖xεk − x

0,ε
k ‖R2

by (3.13)
= Mϕ·

∣∣εF (xε1,k)
∣∣ ≤

≤Mϕ· ε (because F (y) ∈ [0, 1]). (3.15)

Hence, from (3.12) we conclude

lim
ε→0

ˆ
R2

ϕdµε = lim
ε→0

∑
k∈Z

εϕ(xεk)
by (3.14) � (3.15)

= lim
ε→0

∑
k∈Z

εϕ(x0,ε
k ) + lim

ε→0

∑
k∈Z

εD(ε), (3.16)

where

lim
ε→0

∑
k∈Z

εϕ(x0,ε
k ) =

ˆ
R
ϕ(x1, 0) dx1 (by construction of the Riemann sum)

and

ε|D(ε)| ≤
∑
k∈Z

ε|ϕ(xεk)− ϕ(x0,ε
k )| ≤Mϕ

∑
k∈Z

ε2 =

{
k =

1

ε

}
= Mϕ· ε→ 0 as ε→ 0. (3.17)

Indeed, in order to specify the details of the limit passage in (3.16) and (3.17) as ε → 0,
we note that ϕ ∈ C∞0 (R2) has a compact support.

Then, for a given ε > 0, there exists a real value R > 0 such that

suppϕ ⊂ BR(0) =

{[
y1

y2

]
∈ R2 : |y| ≤ R

}
.

So, we can suppose that ∑
k∈Z

εϕ(x0,ε
k ) =

[N(ε)]+1∑
k=−[N(ε)]−1

εϕ(x0,ε
k ),
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where N(ε) = ε−1R and [a] stands for the integer part of a (See Fig.4)

Fig. 4.

It means that
[N(ε)]+1∑

k=−[N(ε)]−1

εϕ(x0,ε
k )

is the Riemann sum of the integral
´ +∞
−∞ ϕ(x1, 0) dx1. Hence, we arrive at the desired relation

(3.16).
The same reasoning should be applied for substantiation of the limit passage (3.17).
Thus, the equality (3.10) holds true for any ϕ ∈ C∞0 (R2).

Proposition 3.2. For every ϕ ∈ C∞0 (R2) the following relation

lim
ε→0

ˆ
R2

ϕdνε = 0 (3.18)

holds true, i.e.
νε
∗
⇀ 0 in M(R2) as ε→ 0.

Proof. Proceeding as we did it in Proposition (3.1), we �x an arbitrary function ϕ ∈ C∞0 (R2).
Then ˆ

R2

ϕdνε =
∑
k∈Z
k=1

ε

ˆ
εYk

ϕdνε =
∑
k∈Z

ϕ(xεk)

ˆ
εYk

dνε

(by ε-periodicity of νε)
=

∑
k∈Z

ϕ(xεk)

ˆ
εY

dνε
(by (3.9))

= ε2
∑
k∈Z

ϕ(xεk)ν(Y )

(by (3.3))
=

∑
k∈Z

ε2ϕ(xεk),

where xεk ∈ ε
(

∆F +
[
k
0

])
is some point of the set Ωε ∩ εYk.

Since ϕ ∈ C∞0 (R2), it follows that there exists a constant Mϕ > 0 such that

|ϕ(x)| ≤Mϕ, ∀x ∈ R2.

As a result, we obtain∑
k∈Z

ε2ϕ(xεk) ≤Mϕ· ε2
∑
k∈Z

1 = Mϕε
2· 1
ε

= εMϕ → 0 as ε→ 0.
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Thus,

lim
ε→0

ˆ
R2

ϕdνε = 0,

and this concludes the proof.

4. On Reformulation of OCP

The main point we are going to touch in this section is to give a new description of the
original optimal control problem (2.1)�(2.3) in the terms of the scaling measures µε and νε.

To do so, let us consider the last term in the integral identity (2.6). Using notation of the
previous section, we can write down

ˆ
ΓN
ε

uγ0(z) dH1 =

Nε=L/ε∑
j=1

ˆ{
(j−1)ε≤x1<jε

x2=−εF

(
x1−(j−1)ε

ε

)} uγ0(z) dH1

(by (3.4) and (3.6) )
=

Nε∑
j=1

|∆∂F |·
ˆ{

(j−1)ε≤x1<jε; x2∈R,

εY +

[
ε(j−1)

0

]
,

} uγ0(z)· ε dµ
( ·
ε

)

= |∆∂F |·
ˆ
εY+

[
ε(j−1)

0

] uγ0(z) dµε = |∆∂F |
ˆ

Ω0∪Ω1

uγ0(z) dµε. (4.1)

Following the similar manner, we have (for the rest terms of identity (2.6))

ˆ
Ωε

fz dx =

ˆ
Ω0

fz dx+

ˆ{
(x1,x2)∈R2

∣∣∣[ 0<x1<L

−εF̃(x1
ε )<x2≤0

]} fz dx,
ˆ

Ωε

(∇y,∇z)R2 dx =

ˆ
Ω0

(∇y,∇z)R2 dx+

ˆ{
(x1,x2)∈R2

∣∣∣[ 0<x1<L

−εF̃(x1
ε )<x2≤0

]}(∇y,∇z)R2 dx,

where

ˆ{[
0<x1<L

−εF̃(x1
ε )<x2≤0

]} fz dx =

Nε∑
j=1

ˆ{[
(j−1)ε<x1≤jε

−εF̃(x1
ε )<x2≤0

]} fz dx
(by (3.5), (3.7) )

= α2(∆F )

Nε∑
j=1

ˆ
εY+

[
ε(j−1)

0

] fz dνε
(
Since,

ˆ
{⋃Nε

j=1

(
εY+

[
ε(j−1)

0

])}fz dνε =

ˆ
D=Ω0∪Ω1

fz dνε

)
= α2(∆F )

ˆ
Ω1∪Ω0

fz dνε. (4.2)
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Remark 4.1. The following relation is the direct consequence of (4.2)

1

α2(∆F )

ˆ
Ω1

f(x)z(x)XΩε\Ω0
(x) dx =

ˆ
Ω1

fz dνε, (4.3)

where z ∈ H1
0 (D) is an arbitrary distribution, and XΩε\Ω0

is the characteristic function of the
set

Ωε \ Ω0 =

{
(x1, x2) ∈ D

∣∣∣ 0 < x1 < L,

−εF̃
(x1

ε

)
< x2 ≤ 0

}
.

Taking these transformations into account, we see that the following descriptions{
v ∈ L2(ΓNε ) : ‖v‖L2(ΓN

ε ) ≤ β∗
}

and {
v ∈ L2(D, dµε) : ‖v‖L2(D,dµε) ≤ |∆∂F |−1/2β∗

}
are equivalent. Here, L2(D, dνε) is the Lebesgue space with respect to the measure νε which
is endowed with the norm

‖f‖2L2(D,dµε) =

ˆ
D
f2(x) dµε.

Indeed, to this inference more evident, it is enough to observe that (see (4.1))

ˆ
ΓN
ε

u2 dH1 =

(ˆ
D
u2 dµε

)
|∆∂F |. (4.4)

As a result, we can reformulate the OCP (2.1)�(2.3) as follows: Find a pair (û0
ε, ŷ

0
ε) such that

û0
ε ∈ L2(D, dµε), ŷ0

ε ∈ H1
0 (Ωε; ΓD), Îε(û

0
ε, ŷ

0
ε) = inf

(u,y)∈
∑̂

ε

Îε(u, y), (4.5)

where

Îε(u, y) =
|∆∂F |

2
‖u‖2L2(D,dµε) +

α

2
‖y − yad‖2L2(Ω0),

and Ξ̂ε is the subset of L
2(D, dµε)×H1

0 (D) such that (u, y) ∈ Ξ̂ε if and only if the following
conditions hold true

(i) ‖u‖L2(D,dµε) ≤ |∆∂F |−1/2β∗

(ii) the integral identity

ˆ
Ω0

(∇ŷ,∇ϕ)R2 dx+ ξ·
ˆ

Ω1

(∇ŷ,∇ϕ)R2 dνε =

ˆ
Ω0

fϕ dx

+ ξ·
ˆ

Ω1

fϕ dνε + |∆∂F |
ˆ
D
uϕdµε for all ϕ ∈ C∞0 (D) (4.6)

is valid for any prototype ŷ ∈ H1
0 (D) of function y ∈ H1

0 (Ωε,Γ
D) (see Remark 4.1).

Here ξ = α2(∆F ).



ASYMPTOTIC ANALYSIS OF OCP IN DOMAIN WITH A ROUGH BOUNDARY 19

As follows from Theorem 2.2, the OCP (4.5) admits a unique optimal pair (û 0
ε , ŷ

0
ε ) ∈ Ξ̂ε ⊂

L2(D, dµε)×H1
0 (Ωε, P

ν) for every �xed ε > 0, f ∈ L2(D), and yad ∈ L2(Ω0).

Moreover, in view of the relation (4.4) we see that

‖u 0
ε ‖2L2(ΓN

ε ) + ‖y 0
ε ‖2H1

0 (Ωε;ΓD) = |∆∂F |‖u 0
ε ‖2L2(D,dµε) + ‖ŷ 0

ε ‖2H1
0 (Ω0;ΓD)

+ α2(∆F )‖∇ŷ 0
ε ‖2L2(Ω1,dνε)2 ≥ C

[
‖u 0

ε ‖2L2(D,dµε) + ‖∇ŷ 0
ε ‖2L2(Ω0)2 + ‖∇ŷ 0

ε ‖2L2(Ω1,dνε)‖
]
,

where ŷ 0
ε ∈ H1

0 (D) is a prototype of y0
ε in the sense of Remark 4.1, and

C = min
{

1, |∆∂F |, |α2(∆F )|
}
.

Hence, due to the estimate (2.19), we have

sup
ε>0

[
‖u0

ε‖2L2(D,dµε) + ‖∇ŷ0
ε‖2L2(Ω0)2 + ‖∇ŷ0

ε‖2L2(Ω1,dνε)2

]
≤ C−1

(
sup
ε>0

[
‖u0

ε‖L2(ΓN
ε ) + ‖y0

ε‖H1
0 (Ωε,ΓD)

]2
)

(by (2.19))

≤ C−1· 2

(diamD‖f‖L2(D)

)2
+

(
β∗

[
1 +

√
δ−1

0

(
1

2
+ 3 diam2D

)])2
 . (4.7)

Thus, the sequence
{

(u0
ε,∇ŷ0

ε)
}
ε→0

is uniformly bounded in the scale of variable spaces

L2(D, dµε)× L2(Ω0)2 × L2(Ω1, dνε)
2.

Let us recall the de�nition and the main properties of the weak and strong convergence in
the variable L2- space [14].

5. Convergence in Variable Spaces

By a non-negative Radon measure on Ω ⊂ R2, we mean a non-negative Borel measure
which is �nite on every compact subset of Ω. The spaces of all non-negative Radon measures on
Ω will be denoted byM+(Ω). According to the Riesz theory, each Radon measure µ ∈M+(Ω)
can be interpreted as element of the dual of the space C0(Ω) of all continuous functions
vanishing of in�nity. If µ is a non-negative Radon measure on Ω, we will use L2(Ω, dµ) to
denote the usual Lebesque space with respect to the measure µ with the corresponding norm

‖f‖L2(Ω,dµ) =

(ˆ
Ω
|f(x)|2 dµ

)1/2

.

Let {µε}ε>0 and µ be Radon measures such that µε
∗
⇀ µ in M+(Ω) , i.e.

lim
ε→0

ˆ
Ω
ϕdµε =

ˆ
Ω
ϕdµ ∀ϕ ∈ C0(R2).
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If we set Ω = D and, for each ε > 0, de�ne the measure µε as follows:

µε = νε, where νε is given by (3.7),

then µε
∗
⇀ µ inM+(D) with dµ = δ{x2=0} dx1dx2 (see Proposition 3.1). At the same time, if

Ω = Ω1 and µε are de�ned by (3.6), then (see Proposition 3.2) µε
∗
⇀ 0 inM+(Ω1).

Let us recall the de�nition and main properties of convergence in the variable L2-space.

1. A sequence
{
vε ∈ L2(Ω, dµε)

}
ε>0

is called bounded if

lim sup
ε→0

ˆ
Ω
|vε|2 dµε < +∞.

2. A bounded sequence {vε ∈ L2(Ω, dµε)}ε>0 converges weakly to v ∈ L2(Ω, dµ) if

lim
ε→0

ˆ
Ω
vεϕdµε =

ˆ
Ω
vϕ dµ ∀ϕ ∈ C∞0 (Ω).

and it is written as vε ⇀ v in L2(Ω, dµε).

3. The strong convergence vε → v in L2(Ω, dµε) means that v ∈ L2(Ω, dµ) and

lim
ε→0

ˆ
Ω
vεwε dµε =

ˆ
Ω
vw dµ as wε ⇀ w in L2(Ω, dµε).

The following convergence properties in variable spaces hold:

(a) Compactness : if a sequence is bounded in L2(Ω, dµε) then this sequence is relatively
compact in the sense of the weak convergence;

(b) Lower semicontinuity : if vε ⇀ v in L2(Ω, dµε) then

lim inf
ε→0

ˆ
Ω
|vε|2 dµε ≥

ˆ
Ω
|v|2 dµ;

(c) Strong convergence : vε → v if and only if vε ⇀ v in L2(Ω, dµε) and

lim
ε→0

ˆ
Ω
|vε|2 dµε =

ˆ
Ω
|v|2 dµ.

6. Asymptotic Analysis of Parametrized OCP (2.1)�(2.3)

In order to study the asymptotic behaviour of the OCP (2.1)�(2.3) as ε→ 0, the passage
to the limit in (2.14) as ε → 0 has to be realized. It is worth to notice that the expression
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"passing to the limit" means that we have to �nd a kind of "limit cost functional" I and the
"limit set of constraints" Ξ with a clearly de�ned structure such that the limit object〈

inf
(u,y)∈Ξε

Iε(u, y)

〉
ε→ 0→

〈
inf

(u,y)∈Ξ
I(u, y)

〉
(6.1)

can be interpreted as some OCP.
Sinse for each ε > 0 the OCP (2.1)�(2.3) lives in the corresponding functional space (see

(4.5)) L2(D, dµε)×H1
0 (Ωε; ΓD), we begin with the de�nition of the convergence (6.1).

De�nition 6.1. We say that a bounded sequence of feasible pairs
{

(uε, yε) ∈ Ξ̂ε

}
σ-converges

to a pair (u, y) as ε→ 0, if

1. u ∈ L2(0, L); y ∈ H1
0 (Ω0; ΓD);

2. uε ⇀ u weakly in L2(ΓNε , dµε);

3. ŷε ⇀ ŷ weakly in H1
0 (D) for any prototypes ŷε ∈ H1

0 (D) of yε ∈ H1
0 (Ωε; ΓD);

4. y = ŷ a.e. in Ω0.

Remark 6.1. Let us show that this de�nition is meaningful. Indeed, the boundedness of the
sequence {

(uε, yε) ∈ Ξ̂ε ⊂ L2(D, dµε)×H1
0 (Ωε; ΓD)

}
ε>0

implies that

sup
ε>0
‖uε‖L2(D,dµε) < +∞, sup

ε>0
‖yε‖H1

0 (Ωε;ΓD) < +∞. (6.2)

Hence, there exists an element u ∈ L2(D, dµ) and a sequence of prototypes {ŷε ∈ H1
0 (D)}

such that (up to a subsequence) uε ⇀ u in variable space L2(D, dµε) and

sup
ε>0
‖ŷε‖H1

0 (D) < +∞. (6.3)

Then the inclusion u ∈ L2(0, L) is a direct consequence of the de�nition of the measure
dµ = δ{x2=0} dx1, whereas the condition (6.3) implies the existence of ŷ ∈ H1

0 (D) and a
subsequence of {ŷε}ε>0 ⊂ H1

0 (D) such that

ŷε ⇀ ŷ in H1
0 (D) as ε→ 0

Hence, ŷ ∈ H1
0 (Ω0; ΓD).

Let us show that the σ-limit pair (u, y) ∈ L2(0, L)×H1
0 (Ω0; ΓD) is unique for any bounded

sequence
{

(uε, yε) ∈ Ξ̂ε

}
ε>0

. To begin with, we note that the property νε
∗
⇀ ν = 0 weakly in

M(R2) leads to the relation (see (3.18) and (4.3))

lim
ε→0

ˆ
R2

ϕdνε =
1

α2(∆F )
lim
ε→0

ˆ
D
ϕ(x)χΩrΩ0(x) dx = 0, ∀ϕ ∈ C∞0 (R2) (6.4)
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i.e., in other words, we can deduce that

χΩrΩ0 ⇀ χ∅ in L2(D). (6.5)

(Here, we use the fact that the set C∞0 (R2) is dense in L2(D)).
On the other hand, we see that

‖χΩεrΩ0‖2L2(D) :=

ˆ
D
|χΩεrΩ0(x)|2 dx =

ˆ
D
χΩεrΩ0(x) dx

as ε→0→ 0

{by (6.4) for ϕ ≡ 1 in D}
= ‖χ∅‖2L2(D). (6.6)

Since the weak convergence in L2(D) and the convergence of norm (6.6) imply the strong
convergence in L2(D), we obtain

χΩεrΩ0 → 0 strongly in L2(D). (6.7)

In order to prove the uniqueness of the σ-limit, it is enough to show that this limit does not

depend on the choice of prototypes sequence. Indeed, let
{

(uε, yε) ∈ Ξ̂ε

}
be given bounded

sequence. Let {ŷε}ε>0 and {ĝε}ε>0 be two di�eren sequences of prototypes for elements {yε ∈
H1

0 (Ωε; ΓD)}. So it is plausible to assume that

ŷε⇀ŷ in H1
0 (D)

ĝε⇀ĝ in H1
0 (D).

(6.8)

Our aim is to show that ŷ(x) = ĝ(x) almost everywhere in Ω0. With that in mind, we set

ξ = ∇ŷ −∇ĝ ∈ L2(D)2.

Then, for every ε > 0 we have the following chain of equalities

‖ŷ − ĝ‖2H1
0 (Ω0;ΓD) =

ˆ
Ω0

|∇ŷ −∇ĝ|2 dx

=

ˆ
Ω0

(∇ŷ −∇ĝ, ξ)R2 dx =

ˆ
D

(∇ŷ −∇ŷε, ξ)R2 dx

+

ˆ
D

(∇ĝε −∇ŷ, ξ)R2 dx+

ˆ
Ω1

(∇ŷε, ξ)R2 dx

−
ˆ

Ω1

(∇ĝε, ξ)R2 dx−
ˆ

Ω1

(∇ŷε, ξ)R2 dx

+

ˆ
Ω1

(∇ĝε, ξ)R2 dx+

ˆ
Ω0

(∇ŷε −∇ĝε, ξ)R2 dx

= I1(ε) + I2(ε) + I3(ε)− I4(ε)− I5 + I6 + I0(ε), (6.9)

where

I0(ε) :=

ˆ
Ω0

(∇ŷε −∇ĝε, ξ)R2 dx = 0
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by de�nition of prototypes.

Hence, passing to the limit in (6.9) as ε→ 0, we get

‖ŷ − ĝ‖2H1
0 (Ω0;ΓD) = lim

ε→0
I1(ε) + lim

ε→0
I2(ε) + lim

ε→0
(I3(ε)− I5)− lim

ε→0
(I4(ε)− I6) = 0

because of the weak convergence (6.8). Thus, ŷ = ĝ as elements of H1
0 (Ω0; ΓD).

As a result, following the scheme of the direct variational convergence (see P.Kogut &
G. Lengering [11]), we adopt the following de�nition for the convergence of minimization
problems (6.1) in variable spaces.

De�nition 6.2. The constrained minimization problem
〈
inf(u,y)∈Ξ I(u, y)

〉
is the variational

σ-limit of the sequence
{〈

inf(u,y)∈Ξε Iε(u, y)
〉

; ε→ 0
}
as ε→ 0 if the following conditions hold

true:

(a) If the sequences {εk}k∈N and {(uk, yk)}k∈N are such that εk → 0 as k →∞,

(uk, yk) ∈ Ξεk , ∀k ∈ N, and (uk, yk)
σ→ (u, y) in L2(D, dµεk)×H1

0 (Ωεk ; ΓD), then

(u, y) ∈ Ξ and I(u, y) ≤ lim inf
k→∞

Iεk(uk, yk). (6.10)

(aa) For every (u, y) ∈ Ξ there exists a sequence {(uε, yε)}ε>0 (called a Γ-realizing sequence)
such that

(uε, yε) ∈ Ξε ∀ε > 0, (uε, yε)
σ→ (u, y) and I(u, y) ≥ lim sup

ε→0
Iε(uε, yε). (6.11)

Taking into account this de�nition, let us show that the constrained minimization problem〈
inf

(u,y)∈Ξ
I(u, y)

〉
, (6.12)

where

I(u, y) =
|∆∂F |

2

ˆ L

0
u2(s) ds+

α

2

ˆ
Ω0

(y(x)− yad(x))2 dx,

Ξ =


(u, y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u ∈ L2(0, L); y ∈ H1
0 (Ω0; ΓD);

‖u‖L2(0,L) ≤ |∆∂F |−1/2β∗;

ˆ
Ω0

(∇y,∇ϕ)R2 dx =

ˆ
Ω0

fϕ dx+ |∆∂F |
ˆ L

0
ϕ(0, s)u(s) ds

for each ϕ ∈ C∞0 (D)


is the variational σ-limit of (2.14) as ε→ 0.
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Veri�cation of condition (a). Let {εk}k∈N and {uk, yk}k∈N be such that εk → 0 as k → ∞,
(uk, yk) ∈ Ξεk ∀k ∈ N, and (uk, yk)

σ→ (u, y) in variable space L2(D, dµεk)×H1
0 (Ωεk ; ΓD).

Let us show that (u, y) ∈ Ξ. Indeed, the conditions u ∈ L2(0, L) and y ∈ H1
0 (Ω0; ΓD) are

immediately follows from the de�nition of σ-convergence. Since (uk, yk) ∈ Ξεk for k ∈ N, it
follows that (see (4.4) and (4.6) )

‖uk‖L2(D,dµεk ) ≤ |∆∂F |−1/2β∗, ∀k ∈ N, (6.13)ˆ
Ω0

(∇ŷk,∇ϕ)R2 dx+ α2(∆F )

ˆ
Ω1

(∇ŷk,∇ϕ)R2 dνεk =

ˆ
Ω0

fϕ dx

+α2(∆F )

ˆ
Ω1

fϕ dνεk + |∆∂F |
ˆ
D
ukϕdµεk , ∀ϕ ∈ C∞0 (D),∀k ∈ N. (6.14)

Then the lower semi-continuity property of the weak convergence uk⇀u in L2(D, dµεk) implies

‖u‖L2(0,L) ≤ lim inf
k→∞

‖uk‖L2(D,dµεk ) ≤ |∆∂F |−1/2β∗.

It remains to pass to the limit in (6.14) as k →∞. With that in mind, we note that

lim
k→∞

ˆ
Ω0

(∇ŷk,∇ϕ)R2 dx =

ˆ
Ω0

(∇y,∇ϕ)R2 dx by σ-convergence (uk, yk)
σ→ (u, y);

lim
k→∞

ˆ
D
ukϕdµεk =

ˆ
D
uϕdµ =

ˆ L

0
u(x)ϕ(x, 0) dx by uk ⇀ u in L2(D, dµεk) ;

α2(∆F ) lim
k→∞

ˆ
Ω1

(∇ŷk,∇ϕ)R2 dνεk = lim
k→∞

ˆ
Ω1

(∇ŷk, χΩε\Ω0
∇ϕ)R2 dx

(as a product of weak and strong convergent sequences inL2(Ω1)2)

=

ˆ
Ω1

(∇ŷ,∇ϕ)R2χ∅ dx = 0.

By analogy with the previous case, we have

α2(∆F )

ˆ
Ω1

fϕ dνεk
k→∞→ 0.

Gathering together relations given above, we arrive at the following limiting integral identity
ˆ

Ω0

(∇y,∇ϕ)R2 dx =

ˆ
Ω0

fϕ dx+ |∆∂F |
ˆ L

0
uϕ(s, 0) ds, ∀ϕ ∈ C∞0 (D).

As a result, we have (u, y) ∈ Ξ.
As for the inequality (6.10), it immediately follows from compactness of the embedding

H1
0 (Ω0; ΓD) ↪→ L2(Ω0) and the lower semi-continuity property of the norm ‖· ‖2L2(D,dµε) with

respect to the weak convergence in L2(D; dµε). Indeed, in this case we have

lim
k→∞

ˆ
Ω0

(yk − yad)2 dx =

ˆ
Ω0

(y − yad)2 dx,

lim
k→∞

ˆ
D
u2
k dµεk ≥

ˆ
D
u2 dµ =

ˆ L

0
u2(s)ds.
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Veri�cation of condition (aa). Let (u, y) be an arbitrary feasible pair to the problem (6.12),
i.e (u, y) ∈ Ξ. Before we will construct a Γ-realizing sequence, we de�ne the sequence{

vε ∈ L2(D, dµε)
}
ε>a

as follows ˆ
D
vεϕdµε =

ˆ
D
u(ϕ)ε dµ =

ˆ L

0
u(s)(ϕ)ε(s, 0) ds (6.15)

Here, (ϕ)ε is determining by the rule
ˆ
D
ϕdµε =

ˆ
D

(ϕ)ε dµ ∀ϕ ∈ C∞0 (R2)

Taking into account the de�nition of measures µε and µ, we see that

ˆ
D

(ϕ)ε dµ =

ˆ L

0
ϕ
(
x1 − εF̂

(x1

ε

))
dx1 (6.16)

Let us show that
vε → u strongly in L2(D, dµε). (6.17)

With that in mind, we make use of the following estimate(ˆ
D

(ϕ)εu dµ

)2

≤
(ˆ

D
u2 dµ

)(ˆ
D

(ϕ)2
ε dµ

)
= const

ˆ
D

(ϕ)2
ε dµ.

In view of (6.16), we can rewrite this inequality as follows(ˆ
D

(ϕ)εu dµ

)2

≤ const

ˆ
D
ϕ2 dµε

Hence, by Rietz Representation Theorem, there exists a function vε such that
ˆ
D
vεϕdµε =

ˆ
D
u(ϕ)ε dµ ∀ ∈ C∞0 (R2)

and

∣∣∣∣ˆ
D
vεϕdµε

∣∣∣∣ ≤ √const‖ϕ‖L2(D,dµε). (6.18)

Since ˆ
D
u(ϕ)ε dµ =

ˆ L

0
u(s)ϕ

(
s,−εF̂

(s
ε

))
ds

and
lim
ε→0

sup
0≤s≤L

|ϕ(s,−εF̂
(s
ε

)
)− ϕ(s, 0)| = 0,

it follows from (6.18) that

lim
ε→0

ˆ
D
vεϕdµε =

ˆ L

0
u(s)ϕ(s, 0) ds =

ˆ
D
uϕdµ,

i.e vε⇀u weakly in L2(D, dµε).

(6.19)
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To conclude the proof of assertion (6.17), it is enough to recall that, by the Rietz Representation
Theorem, we have ˆ

D
v2
ε dµε ≤

ˆ
D
u2dµ (6.20)

Since, by the lower semi-continuity property (b),

ˆ
D
u2 dµ ≤ lim inf

ε→0

ˆ
D
v2
ε dµε,

it follows from (6.20) that

lim
ε→0

ˆ
D
v2
ε dµε =

ˆ
D
u2 dµ (6.21)

Thus, the strong convergence (6.17) is a direct consequence of (6.19) and (6.21) by property(c)
of the weak convergence in variable spaces.

Let Bε be the ball in L
2(D, dµε) centered at the origin and with radius |∆∂F |−1/2β∗, i.e.

Bε =
{
v ∈ L2(D, dµε) : ‖v‖L2(D,dµε) ≤ |∆∂F |−1/2 β∗

}
.

Let Pε : L2(D, dµε)→ Bε be the orthogonal projection operator, which can be de�ned as
follows

P (v) =

{
v, if v ∈ Bε;
Argmin ‖v − z‖2L2(D,dµε), otherwise.

For every ε > 0 we set uε = Pε(vε), where vε is given by (6.15), and yε ∈ H1
0 (Ωε; ΓD) is a

weak solution to the boundary value problem (2.2) with u = uε.
Let us show that {(uε, yε)}ε>0 is a Γ-realizing sequence in the sense of (6.2). Indeed, as

it was shown in Theorem 2.1 , for every uε ∈ L2(D, dµε)
(
and, therefore,u ∈ L2(ΓNε )

)
there

exists a unique solution yε ∈ H1
0 (Ωε,Γ

D) for which the a priori estimate (2.19) holds true. In
particular, if ŷε ∈ H1

0 (D) is a prototype for yε, then

‖ŷε‖H1
0 (D) ≤ Ĉ‖yε‖H1

0 (Ωε;ΓD)

by (2.19)

≤ Ĉ

[
diamD· ‖f‖L2(D) + β∗

(
1 +

√
δ0

(
1

2
+ 3 diam2D

))]
, ∀ ε > 0.

(6.22)

As for the controls uε = Pε(vε) ∀ ε > 0, we see that uε ∈ Bε ⊂ L2(D, dµε), and, therefore,

‖uε‖L2(D,dµε) ≤ |∆∂F |−1/2β∗, ∀ε > 0. (6.23)

Thus, the sequence {(uε, yε)}ε>0 is bounded in L
2(D, dµε)×H1

0 (D). Therefore, we can suppose
that there exists a subsequence of {(uε, yε)}ε>0 (still denoted by the same su�x ε) and a pair
(u∗, y∗) ∈ L2(D, dµε)×H1

0 (D) such that

uε⇀u∗ in L2(D, dµε), and ŷε⇀y∗ in H1
0 (D) as ε→ 0.



ASYMPTOTIC ANALYSIS OF OCP IN DOMAIN WITH A ROUGH BOUNDARY 27

and (u∗, y∗) is subjected to the estimates (6.22) and

‖u∗‖L2(D,dµ) ≤ |∆∂F |−1/2β∗.

To begin with, let us show that u∗ = u. With that in mind, we make use the following obvious
properties:

(i) (ϕ)ε → ϕ strongly in L2(D, dµε) ∀ϕ ∈ C∞0 (R2) ;

(ii) vε → v strongly in L2(D, dµε), hence,ˆ
D
v2
ε dµε →

ˆ
D
u2 dµ (by de�nition of the strong convergence);

(iii) Since
´
D u

2 dµ ≤ |∆∂F |(β∗)2, it follows from (ii) that there exist a numerical sequence
{δε}ε→0 such that

‖vε‖L2(D,dµε) ≤ |∆∂F |−1/2β∗ + δε, ∀ε > 0 and δε → 0 as ε→ 0;

(iv) For each ϕ ∈ C∞0 (R2), we have

‖(ϕ)ε‖2L2(D,dµε) =

ˆ
D

(ϕ)2
ε dµε ≤

ˆ
D

(
sup
x∈D
|ϕ(x)|

)2

dµε

= ‖ϕ‖2C(R2)·
ˆ
D
dµε = µε(D)· ‖ϕ‖2C(R2) ≤ Const· ‖ϕ‖2C(R2);

(v) By de�nition of the orthogonal projection operator Pε : L2(D, dµε)→ Bε, we have

Pε(vε) = ϕεvε, where ϕε = min

{
1,
|∆∂F |−1/2β∗

‖vε‖L2(D,dµε)

}

(vi) In view of item(v),

‖Pε(vε)− vε‖L2(D,dµε) = |γε − 1|· ‖vε‖L2(D,dµε)

by (iii)

≤

∣∣∣∣∣1− |∆∂F |−1/2β∗

‖vε‖L2(D,dµε)

∣∣∣∣∣ · ‖vε‖L2(D,dµε)

=
∣∣∣‖vε‖L2(D,dµε) − |∆∂F |−1/2β∗

∣∣∣
≤ |∆∂F |−1/2β∗ + δε − |∆∂F |−1/2β∗ = δε → 0 as ε→ 0.

Taking these properties into account and choosing an arbitrary function ϕ ∈ C∞0 (R2), we
get

∆ :=

ˆ
D
u∗(ϕ)εdµ−

ˆ
D
u(ϕ)ε dµ

=

ˆ
D
u∗(ϕ)ε dµ−

ˆ
D
uε(ϕ)ε dµε +

ˆ
D
uε(ϕ)ε dµε −

ˆ
D
vε(ϕ)ε dµε

+

ˆ
D
vε(ϕ)ε dµε −

ˆ
D
vεϕdµε = Iε1 + Iε2 + Iε3 ,



28 P. I. KOGUT, YU.H. KOVALENKO

where

Iε1 =

ˆ
D
u∗(ϕ)ε dµ−

ˆ
D
uε(u)ε dµε

=

ˆ
D
u∗ϕdµ−

ˆ
D
uεϕdµε +

ˆ
u∗ ((ϕ)ε − ϕ) dµ+

ˆ
D
uε [ϕ− (ϕ)ε] dµε

= Jε1 + Jε2 + Jε3 → 0 as ε→ 0

because

• Jε1 → 0 by the weak convergence uε⇀u∗ in L2(D, dµε);

• Jε2 ≤ ‖u∗‖L2(D,dµ)‖(ϕ)ε − ϕ‖L2(D,dµ) → 0 by the properties of smoothing operator;

• Jε3 ≤
(

sup
ε>0
‖uε‖L2(D,dµε)

)
︸ ︷︷ ︸

Const

· ‖ϕ − (ϕ)ε)‖L2(D,dµε) ≤ Const· supx∈D |ϕ(x) − (ϕ)ε(x)| → 0

by the properties of smoothing operator.

As for the rest terms in ∆, we have

Iε3 ≤
(

sup
ε>0
‖vε‖L2(D,dµε)

)
· ‖(ϕ)ε − ϕ‖L2(D,dµε) → 0

(by analogy with the previous case);

Iε2 =

ˆ
D
Pε(vε)(ϕ)ε dµε −

ˆ
D
vε(ϕε) dµε ≤ ‖Pε(vε)− vε‖L2(D,dµε)]· ‖ϕ‖C(R2)·Const

by (iv)

≤ δε‖ϕ‖C(R2)·Const→ 0 as ε→ 0.

Thus, we �nally arrived at the following relation
ˆ
D
u∗ϕdµ =

ˆ
D
uϕdµ for every ϕ ∈ C∞0 (R2),

which implies

u∗ = u in L2(D, dµ).

Since this inference is valid for any cluster point u∗ of the sequence {uε}ε>0 with respect to
the weak convergence in L2(D, dµε), it follows that u ∈ L2(D, dµ) is the weak limit for the
entire sequence {uε}ε>0.

Our next step is to show that

lim
ε→0
‖uε‖2L2(D,dµε) = ‖u‖2L2(D,dµ), (6.24)

where

uε = Pεvε = γεvε, ∀ε > 0,
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and vε is related with u by (6.15) and, therefore, vε → u strongly in L2(D, dµε).
Indeed,

‖uε‖L2(D,dµε) = ‖Pε(vε)− vε + vε‖L2(D,dµε) ≤ ‖Pε(vε)− vε‖L2(D,dµε) + ‖vε‖L2(D,dµε).

Then

‖Pε(vε)− vε‖L2(D,dµε) ≤ δε → 0 by property (vi),

and ‖vε‖L2(D,dµε) → ‖u‖L2(D,dµ) by property (ii).

Hence, relation(6.24) is valid.
It remains to show that y∗ = y as element of H1

0 (Ω0; ΓD) and this equality holds for any
cluster point y∗ of the sequence {ŷε}ε>0 ⊂ H1

0 (D).
Indeed, as follows from de�nition of the elements ŷε, the following integral identity (see

for comparison (6.14))

ˆ
Ω0

(∇ŷε,∇ϕ)R2 dx+ α2(∆F )

ˆ
Ω1

(∇ŷε,∇ϕ) dνε

=

ˆ
Ω0

fϕ dx+ α2(∆F )

ˆ
Ω1

fϕ dνε + |∆∂F |
ˆ
D
uεϕdµε (6.25)

holds true for every test function ϕ ∈ C∞0 (D) and any ε > 0.

Using the fact that (uε, yε)
σ→ (u, y∗) and applying the similar argument as we did it before

(see the substantiation of the limit passage in (6.14)), we can pass to the limit in (6.25) as
ε→ 0. As a result, we arrive at the integral identity

ˆ
Ω0

(∇y∗,∇ϕ)R2 dx =

ˆ
Ω0

fϕ dx+ |∆∂F |
ˆ L

0
u(s)ϕ(s, 0) ds,

which is valid for every ϕ ∈ C∞0 (D).
Hence, y∗ is a weak solution to the limit boundary value problem

−∇y = f in Ω0,

y = 0 on ΓD = ∂Ω0 \ ΓN ,

∂y

∂n
= u|∆∂F | on ΓN =

{
(x1, x2)

∣∣∣x2 = 0, 0 < x1 < L)
}
.

 (6.26)

Since, by Lax-Milgram Theorem, this problem admits a unique weak solution in H1
0 (Ω0,Γ

D)
and the pair (u, y) belongs to the set Ξ (see (6.12)), it follows that for a given control u ∈
L2(0, L), we have

y∗ = y as elements of H1
0 (Ω0,ΓD).

It remains to notice that this conclusion is valid for any cluster point y∗ of the sequence
{ŷε}ε>0 ⊂ H1

0 (D). Thus,

(uε, yε)
σ→ (u, y) as ε→ 0 and (u, y) ∈ Ξ,
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i.e {(uε, yε)}ε>0 is a Γ-realizing sequence.

To conclude the proof of item (aa), we make use of the following observation:

|∆∂F |
2

ˆ
D
u2
ε dµε

ε→0→ |∆∂F |
2

ˆ L

0
u2(s) ds by(6.24)

and

α

2

ˆ
Ω0

(yε − yad)2 dx
ε→0→ α

2

ˆ
Ω0

(y − yad)2 dx

by compactness of the embedding H1
0 (Ω0,Γ

D) ↪→ L2(Ω0). Thus

lim
ε→0

Iε(uε, yε) = I(u, y)

and this concludes the proof of (aa)-property of De�nition 6.2.

It other words, we have shown that the constrained minimization problem (6.12) is the
variational σ-limit of the sequence (2.14) as ε→ 0. Moreover, as immediately follows from the
structure of the cost functional I(u, y) and the set of admissible pairs Ξ, the problem (6.12)
can be recovered in the form of the following optimal control problem:

Minimize

I(u, y) =
|∆∂F |

2

ˆ L

0
u2(s) ds+

α

2

ˆ
Ω0

(y − yad)2 dx (6.27)

subjected to the constraints

−∇y = f in Ω0,

y = 0 on ΓD,

∂y

∂n
= u|∆∂F | on ΓN ,

‖u‖L2(0,L) ≤ |∆∂F |−1/2β∗,


(6.28)

where ΓN = {(x1, 0)| 0 < x1 < L}, ΓD = ∂Ω0 \ |ΓN .
To conclude this section, it is worth to note that the limit OCP (6.27)�(6.28) has a unique

solution (u0, y0) ∈ L2(0, L) × H1
0 (Ω0; ΓD) (see Fursikov [7]) and this solution possesses the

following remarkable property:

Theorem 6.1. Let (u0
ε, y

0
ε) ∈ L2(ΓNε ) ×H1

0 (Ωε,Γ
D) be an optimal pair to the original OCP

(2.1)�(2.3). Then

(u0
ε, y

0
ε)

σ→ (u0, y0) ∈ L2(0, L)×H1
0 (Ω0,Γ

D)

I(u0, y0) = lim
ε→0

Iε(u
0
ε, y

0
ε).

For the proof of this result, we refer to Kogut & Lengering (see Theorem Th 5.3, p.142
in [11]).
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Properly speaking, this result reveals the way for the construction of suboptimal controls
to OCPs in domains with rough boundaries. In particular, we can consider as a suboptimal
control to the problem (2.1)�(2.3) the following one:

usub
ε = Pε(v

0
ε) = min

{
1,
|∆∂F |−1/2β∗

‖v0
ε‖L2(D,dµε)

}
· v0
ε ,

where v0
ε ∈ L2(D, dµε) is the lift of optimal control to the limit problem (6.27)�(6.28), which

can be de�ned by the rule

ˆ
D
v0
εϕdµε =

ˆ
D
u0(ϕ)ε dµ =

ˆ L

0
u0(s)(ϕ)ε(s, 0) ds ∀ϕ ∈ C∞0 (R2).
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