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Abstract. We study traffic flow models for road networks in vector-valued optimization
statement where the flow is controlled at the nodes of network. We consider the case
when an objective mapping possesses a weakened property of upper semicontinuity and
make no assumptions on the interior of the ordering cone. We derive sufficient conditions
for the existence of efficient controls of the traffic problem and discuss the scalarization
approach to its solution. We also prove the existence of the so-called generalized efficient
controls.

1. Introduction

The main goal of this paper is to discuss macroscopic traffic flow models on road
networks in the framework of the vector optimization statement. Modeling and simulation
of traffic flow on the road networks has been investigated intensively during the last years;
see for example [3, 4, 7, 10, 11, 14]. Since the support of the decision making in traffic
management is a topical problem, the most investigations in this field deal with the
optimal control problems of the flow in traffic networks. Typically, the main focus of such
investigations is on the construction of optimal traffic parameters on the network and on
the derivation of an optimality system and the evaluation of the gradient of the objective
functions that appear in the corresponding optimization problems.

In this paper we focus on the approach based on Lighthill-Whitham-Richards (LWR)
model. We suppose that the road networks consist of a finite set of roads, that meet
at some junctions. To describe the dynamics on a network, represented by a directed
topological graph, we use the hyperbolic system of conservation laws in one dimension
and suppose that the flow is controlled at the nodes of network. Our prime interest is to
consider the traffic optimization problems in new statement, which involves topological
properties of an objective space, and discuss the problem of their solvability. We deal
with the case when the objective mapping possesses a weakened property of lower semi-
continuity and takes values in the space L2(Ω), closely related with the geometry of road
network and partially ordered by a cone Λ of positive elements. We prove the existence
of the so-called efficient controls and generalized solutions to the corresponding vector
optimization problem on a network and study their main properties.

2. Notation and Preliminaries

In this section we recall some known basic notions about functions with bounded vari-
ation, networks, and introduce a few notation concerning vector-valued mappings and
partially ordered functional spaces.

Functions with Bounded Variation. Let J = (a, b) (a < b) be a given interval in R.
Consider a function f : J → R such that f ∈ L1(J). The total variation of f on J is
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defined as

Tot VJ(f) = sup

{
m∑

j=1

|f(xj) − f(xj−1)| : m ∈ N, a < x0 < x1 < · · · < xm < b

}
,

where xj are the points of approximal continuity of f (see [6]).

Definition 2.1. We say that f ∈ L1(J) is a function of bounded variation on J if there
exists a constant K > 0 such that Tot VJ(f) ≤ K. We denote with BV (J) the set of all
real functions f ∈ L1(J) with bounded variation on J .

Note that the total variation of a function f is a positive number. If f ∈ BV (J), then
it is clear that f : J → R is bounded almost everywhere on J . The following statements
are equivalent (see [8]):

(i): f ∈ BV (J);
(ii): f ∈ L1(J) and

|Df |(J) := sup

{∫

J

f ϕ′ dx : ϕ ∈ C1
0(J), |ϕ| ≤ 1

}
< +∞;

(iii): there exists a sequence of smooth functions {fk}
∞
k=1 ⊂ C∞

0 (R) such that fk → f
strongly in L 1(J) and lim sup

k→∞

∫
J
|f ′

k| dx < +∞,

where the distributional derivative Df is a Radon measure and |Df |(J) coincides with
the total variation of f on J . Moreover, for any f ∈ BV (J) the right-hand side and
left-hand side limits

f(x+) = lim
h→0+

1

h

∫ x+h

x

f(s) ds, f(x−) = lim
h→0+

1

h

∫ x

x−h

f(s) ds

exist at all x ∈ [a, b), and x ∈ (a, b], respectively. Finally, f(x+) = f(x−) if |Df |({x}) = 0.
The following theorem holds.

Theorem 2.1. (a) The space BV (J) is a Banach space with respect to the norm

‖f‖BV (J) = ‖f‖L1(J) + |Df |(J);

(b) the mapping f → |Df |(J) is lower semicontinuous with respect to the L1(J) conver-
gence, that is, if fk → f in L1(J) then |Df |(J) ≤ lim infk→∞ |Dfk|(J);
(c) if {fk}

∞
k=1 ⊂ BV (J) and supk∈N ‖fk‖BV (J) < +∞ then there exists a subsequence of

{fk}
∞
k=1 strongly converging in L1(J) to some f ∈ BV (J).

In what follows, we say that a sequence {fk}
∞
k=1 ⊂ BV (J) converges weakly in BV (J)

and we write fk ⇀ f in BV (J) if fk → f strongly in L1(J) and supk∈N |Dfk|(J) < +∞.
Note that if fk ⇀ f in BV (J) then f ∈ BV (J) and Dfk ⇀ Df as Radon measures.

Networks of roads. Let O be an open convex subset of R2 and let F be a planar graph on
R2.

Definition 2.2. We say that the set Ω = O ∩ F is a network of roads enclosed by the
region Ω if it can be represented as a couple (I,J ) where

(a): I is a finite collection of edges, which correspond to roads in the network and
are parameterized by intervals Ii = [ai, bi] in R with i = 1, . . . , N ;

(b): J is a finite collection of vertices, which correspond to junctions in the network.
Each vertex J is union of two nonempty subsets Inc (J) and Out (J) of {1, . . . , N},

such that:



(i): each vertex J ∈ J is an interior point of Ω;
(ii): for every J 6= J ′ ∈ J we have Inc (J)∩ Inc (J ′) = ∅ and Out (J)∩Out (J ′) = ∅;
(iii): if i 6∈ ∪J∈J Inc (J) then bi corresponds to some point on ∂Ω (an outgoing road

from the network) and if i 6∈ ∪J∈JOut (J) then ai corresponds to some point on
∂Ω (an incoming road to the network).

Moreover, the two cases are mutually exclusive.

Figure 2.1: Geometry of a sample network

Thus a sample network might have a structure as indicated in figure 2.1.

Optimality Notion in Partially Ordered Spaces. Let Ω be a network. We associate with
this set the objective space L2(Ω). Hereinafter we adopt the notation y ∈ L2(Ω) if and
only if y = (y1, . . . , yN) and yk ∈ L2(Ik) for k = 1, . . . , N . By default suppose that L2(Ω),
as topological space, is endowed with the weak topology. For a subset S ⊂ L2(Ω) we
denote by intw S and clw S its interior and closure with respect to the weak topology,
respectively. We also assume that L2(Ω) is partially ordered by the natural ordering cone
of positive elements Λ, which is defined as

(2.1) Λ =
{
f ∈ L2(Ω) : f(x) ≥ 0 almost everywhere on Ω

}
.

Then for elements y, z ∈ L2(Ω), we will write y ≤Λ z whenever z ∈ y + Λ and y <Λ z for
y, z ∈ L2(Ω), if z−y ∈ Λ\{0}. We say that a sequence {yk}

∞
k=1 ⊂ L2(Ω) is non-increasing

and we use the notation yk ց whenever, for all k ∈ N, we have yk+1 ≤Λ yk. We also say
that a sequence {yk}

∞
k=1 ⊂ L2(Ω) is bounded below if there exists an element y∗ ∈ L2(Ω)

such that y∗ ≤Λ yk for all k ∈ N.
For the study of “optimal”elements of a nonempty subset S of the partially ordered

space L2(Ω) we are mainly interested in maximal elements of this set.

Definition 2.3. (see [12]) An element y∗ ∈ S ⊂ L2(Ω) is said to be maximal of the set
S, if there is no y ∈ S such that y ≥Λ y∗, y 6= y∗, that is

S ∩ (y∗ + Λ) = {y∗}.

Let MaxΛ(S) denote the family of all maximal elements of S. Let us introduce two
singular elements −∞Λ and +∞Λ in L2(Ω). We assume that these elements satisfy the
following conditions:

1) −∞Λ � y � +∞Λ, ∀y ∈ L2(Ω); 2) + ∞Λ + (−∞Λ) = 0.

Let Y • denote the semi-extended Banach space: Y • = L2(Ω) ∪ {−∞Λ} assuming that

‖ −∞Λ‖L2(Ω) = +∞ and y + λ(−∞Λ) = −∞ ∀ y ∈ L2(Ω) and ∀λ ∈ R+.

The following concept is a crucial point in this paper.



Definition 2.4. We say that a set E is the efficient supremum of a set S ⊂ L2(Ω) with
respect to the weak topology of L2(Ω) (or shortly (Λ, w)-supremum) if E is the collection
of all maximal elements of clw S in the case when this set is non-empty, and E is equal
to {+∞Λ} in the opposite case.

Hereinafter the (Λ, w)-supremum for S will be denoted by SupΛ,w S. Thus, in view of
the definition given above, we have

SupΛ,w S :=

{
MaxΛ(clw S), MaxΛ(clw S) 6= ∅
+∞Λ, MaxΛ(clw S) = ∅.

Let X∂ be a nonempty subset of a Banach space X, and I : X∂ → L2(Ω) be some
mapping. Note that the mapping I : X∂ → L2(Ω) can be associated with its natural

extension Î : X → Y • to the whole space X, where

(2.2) Î(x) =

{
I(x), x ∈ X∂,
−∞Λ, x /∈ X∂.

We say that a mapping I : X∂ → Y • is bounded above if there exists an element
z ∈ L2(Ω) such that z ≥Λ I(x) for all x ∈ X∂.

Definition 2.5. A subset A of L2(Ω) is said to be the efficient supremum of a mapping

I : X∂ → L2(Ω)

with respect to the weak topology of L2(Ω) and is denoted by SupΛ,w
x∈X∂

I(x), if A is the

(Λ, w)-supremum of the image I(X∂) of X∂ in L2(Ω), that is,

SupΛ,w
x∈X∂

I(x) = SupΛ,w {I(x) : x ∈ X∂} .

Remark 2.1. It is clear now that if a ∈ SupΛ,w
x∈X∂

I(x) then

clw {I(x) : x ∈ X∂} ∩ (a + Λ) = {a}

provided MaxΛ [clw {I(x) : x ∈ X∂}] 6= ∅.

Let {yk}
∞
k=1 be a sequence in L2(Ω). Let Lw{yk} denote the set of all its cluster points

with respect to the weak topology of L2(Ω), that is, y ∈ Lw{yk} if there is a subsequence
{yki

}∞i=1 ⊂ {yk}
∞
k=1 such that yki

⇀ y in L2(Ω) as i → ∞. If this set is upper unbounded,

i.e., SupΛ,w Lw{yk} = +∞Λ, we assume that {+∞Λ} ∈ Lw{yk}. Let x0 ∈ X∂ be a fixed
element. In what follows for an arbitrary mapping I : X∂ → L2(Ω) we make use of the
following sets:

Lσ×w(I, x0) :=
⋃

{xk}
∞

k=1
∈Mσ(x0)

Lw{Î(xk)},(2.3)

Lσ×w
max (I, x0) := Lσ×w(I, x0) ∩ SupΛ,w

x∈X∂
I(x),(2.4)

where Mσ(x0) is the set of all sequences {xk}
∞
k=1 ⊂ X such that xk → x0 with respect to

a σ-topology of X.
We are able to introduce the notion of the upper limit for the vector-valued mappings.

Definition 2.6. We say that a subset A ⊂ L2(Ω) ∪ {±∞Λ} is the Λ-lower sequential
limit of the mapping I : X∂ → L2(Ω) at the point x0 ∈ X∂ with respect to the product

topology σ × w of X × L2(Ω), and we use the notation A = lim supΛ,w

x
σ
→x0

I(x), if

(2.5) lim supΛ,w

x
σ
→x0

I(x) :=

{
Lσ×w

max (I, x0), Lσ×w
max (I, x0) 6= ∅,

SupΛ,w Lσ×w(I, x0), Lσ×w
max (I, x0) = ∅.



Remark 2.2. Note that in the scalar case (I : X∂ → R) the sets

SupΛ,w
x∈X∂

I(x) and SupΛ,w Lσ×w(I, x0)

are singletons. Therefore, if Lσ×w
max (I, x0) 6= ∅ then we have

Lσ×w
max (I, x0) = Lσ×w(I, x0) ∩ SupΛ,w

x∈X∂
I(x) =

= SupΛ,w Lσ×w(I, x0) ∩ SupΛ,w
x∈X∂

I(x) = SupΛ,w Lσ×w(I, x0).

Hence the choice rules in (2.5) coincide and we come to the classical definition of the
upper limit.

3. Continuous Model of Traffic Flow

In this section we give a brief review of a fluid dynamic model for traffic flow networks
following Coclite & Piccoli [3] (see also [7]).

Let Ω = O ∩ F be a given network which has a total of N roads. For i ∈ {1, . . . , N}
road i is parameterized by an interval [ai, bi]. Let ρi = ρi(t, x) denote the density of cars
on road i at the point x ∈ [ai, bi] and at time t ∈ [0, T ]. Further, the maximal allowable
density on road i describing the situation where cars stand bumper to bumper is denoted
by ρmax,i. As usual, we assume that the roads correspond to the edges of a graph F

enclosed by the region Ω, and the junctions where the roads are connected correspond to
the nodes of this graph. The number of cars crossing per unit time is called the traffic
flow f(ρ) = ρv(ρ), where v(ρ) is a velocity. A reasonable property of v is that v is a
decreasing function of the density. By analogy with [7, 11], we assume that there exists a
family of flux-functions fi such that for each road i ∈ {1, . . . , N}

(3.1)





fi is a function of ρi only,
fi is continuously differentiable on [0, ρmax,i],
fi(0) = fi(ρmax,i) = 0,
fi is strictly concave,
there exists σi ∈ (0, ρmax,i) : f ′

i(σi) = 0 and (ρ − σi)f
′
i(ρ) < 0, ∀ρ 6= σi.

As follows from the above flux-function definition, there is no traffic flow at ρi = 0 and
ρi = ρmax,i. For other values of density 0 < ρi < ρmax,i the traffic flow must be strictly
positive. The value σi is the optimal density at which a maximum traffic flow occurs.
Moreover, these conditions imply that the positive direction of flow on each road of the
network is fixed. As a result, for each i ∈ {1, . . . , N}, the macroscopic model for traffic
flow on road i can be given by the following nonlinear conservation law (the so-called
LWR-equations, see [15]):

(3.2) ∂tρi(t, x) + ∂xfi (ρi(t, x)) = 0, ∀x ∈ (ai, bi), ∀ t ∈ (0, T ],

(3.3) ρi(0, x) = ρi(x), ∀x ∈ [ai, bi],

with flux
fi(ρ) = ρvi(ρ),

where, by assumption, the velocity vi is a continuously differential decreasing function of
only the density.

Remark 3.1. The main feature of the nonlinear system (3.2)–(3.3) is the fact that the
classical solution may not exist for some positive time, even if the initial datums are
smooth. As for the initial boundary valued problem for the equation (3.2), it is ill-posed
in general (which means that there may be no solution or one that does not depend in



a continuous way on the initial and boundary data, or nonuniqueness). In other words,
as soon as the initial condition is given, the solution cannot be prescribed arbitrary on
the boundary. In view of this the boundary conditions for roads which income to or
outcome from the network Ω can be given in the sense of Bardos, LeRoux, and Nedeles
[1]. However, for simplicity, we suppose that ai = −∞ and bi = +∞ if i 6∈ ∪J∈J Inc (J)
and i 6∈ ∪J∈JOut (J), respectively.

In order to complete the model (3.2)–(3.3), one needs to define the flow through each
of junctions J ∈ J in the network. For this, at each junction we consider a so-called
Riemann solver (see [7]) satisfying the conservation of cars and the following rules:

(A): there are some prescribed preferences of drivers, that is the traffic from incom-
ing roads is distributed on outgoing roads according to fixed coefficients;

(B): respecting (A), drivers choose so as to maximize fluxes.

Let us consider a single junction J with n incoming roads, say I1, . . . , In with end bi

(i ∈ {1, . . . , n}) at the junction, and m outgoing roads, say In+1, . . . , In+m with end ai

(i ∈ {n + 1, . . . , n + m}) at the junction. Then to guarantee the conservation of the
number of cars at the junction J the following condition must be prescribed:

(3.4)
n∑

i=1

fi (ρi(t, bi)) =
n+m∑

i=n+1

fi (ρi(t, ai)) , ∀ t ∈ [0, T ], ∀ J ∈ J .

This is the so-called Rankine-Hugoniot conditions at the junctions. However, the problem
is that the condition (3.3)–(3.4) are not sufficient to determine a unique solution of the
system (3.2) on the network. Indeed, let ρ̂ = (ρ̂1, . . . , ρ̂n+m) denote the solution at above
fixed junction J ∈ J . If ρ̂ is known, then a Riemann problem (3.2)–(3.4) is solved for each
road with ρ̂i as the right state for incoming roads (i ≤ n) and the left state for outgoing
roads with (i ∈ {n + 1, . . . , n + m}). As a result the solution may consist of shock waves
or rarefaction waves emerging from the junction. However, we have n+ m unknowns and
only one equation (3.4) at the junction. To define these additional conditions, we follow
the approach of Coclite, Garavello & Piccoli [7] and introduce a traffic distribution matrix
A(J) ∈ Rm×n such that

A(J) = [αji(J)] , j ∈ {n + 1, . . . , n + m} , i ∈ {1, . . . , n} ,(3.5)




aji(J) 6= aji′(J), ∀ i 6= i′, 0 < αji(J) < 1,

n+m∑
j=n+1

αji(J) = 1 for every i ∈ {1, . . . , n} .
(3.6)

Given a junction J and an incoming road Ii, the i-th column of A(J) describes how the
traffic from Ii distributes in percentages to the outgoing roads. This means that if C is
the quantity of the traffic coming from the road Ii then αji(J)C traffic moves towards
roads Ij . Thus A(J) ∈ Rm×n describes the percentages of drivers who want to drive
from road Ii to road Ij. For simplicity we assume that for every junction J ∈ J the
corresponding matrix A(J) ∈ Rm×n is independent of the time, even if, in general, the
matrices A(J) ∈ Rm×n are time-dependent. For instance, in the case of car traffic on an
urban network, the preferences of drivers may change depending on the period of the day.

We introduce a technical condition on matrix A (J) . We say that the matrix A satisfies
hypothesis (C) if the following holds:



(C): Let {e1, ..., en} be the canonical basis of Rn and for every subset V ⊂ Rn

indicate by V ⊥ its orthogonal. Define for every i = 1, ..., n, Hi = {ei}
⊥, i. e. the

coordinate hyperplane orthogonal to ei and, for every j = n + 1, ..., n + m, let
αj = (αj1, αj2, ..., αjn) ∈ Rn and define Hj = {aj}

⊥. Let K be the set of indices
k = (k1, ..., kl), 1 ≤ l ≤ n − 1, such that 0 ≤ k1 < k2 < ... < kl ≤ n + m and for

every k ∈ K set Hk =
l⋂

h=1

Hkl
.Letting 1 = (1, ..., 1) ∈ Rn, then for every k ∈ K,

1 /∈ H⊥
k .

Remark 3.2. Note that from (C) we immediately derive m ≥ n.
Condition (C) cannot hold for crossings with n incoming roads and one outgoing road.

We thus introduce some further parameters whose meaning is the following. When not
all cars can go through the junction, there is a yielding rule that describes the percentage
of cars crossing the junction, which come from a particular incoming road. In particular
we assume the rule:

(P): Assume not all cars can enter the outgoing road and let C be the amount that

can do it. Then qiC cars come from the road i, i = 1, ..., n with
n∑

i=1

qi = 1.

We are now ready to give the definition of solution of (3.2) at junctions J ∈ J and on
the whole network Ω, following [7].

Definition 3.1. Let J be a junction with n incoming roads, say I1, . . . , In( with end bi),
and m outgoing roads, say In+1, . . . , In+m (with end ai). We say that

ρ = (ρ1, . . . , ρn+m) :

n+m∏

l=1

([0, T ] × Il) → Rn+m

ρ(t, ·) ∈
n+m∏

l=1

BV (Il) for every t ∈ [0, T ]

is a weak solution of (3.2) related to the matrix A(J) ∈ Rm×n at the junction J if it is a
collection of functions ρl : [0, T ] × Il → R with l ∈ {1, . . . , n + m}, such that:

(i):

(3.7)

n+m∑

l=1

(∫ T

0

∫ bl

al

(ρl∂tϕl + fl(ρl)∂xϕl) dx dt

)
= 0,

for every collection of test functions ϕl, l ∈ {1, . . . , n + m}, smooth having com-
pact support in the set (0, T ) × (al, bl] for l ∈ {1, . . . , n} (incoming roads) and in
(0, T )× [al, bl) for l ∈ {n + 1, . . . , n + m} (outgoing roads), and smooth across the
junction, i.e.

ϕi(·, bi) = ϕj(·, aj),

∂xϕi(·, bi) = ∂xϕj(·, aj), i ∈ {1, . . . , n} , j ∈ {n + 1, . . . , n + m} ;

(ii): fj(ρj(·, a
+
j )) =

n∑

i=1

αji(J)fi(ρi(·, b
−
i )) for each j ∈ {n + 1, . . . , n + m};

(iii): L(J, A, ρ) :=

n∑

i=1

fi(ρi(·, b
−
i )) is maximum subject to (i) and (ii).



Remark 3.3. The condition (i) of this Definition is essentially the conservation of cars at
junctions. Moreover, as is evident from foregoing, formula (3.7) implies the conservation
condition (3.4) if the functions ρl are sufficiently regular. As for the rest conditions (ii)
and (iii), they describe the rules (A) and (B), i.e. the preferences of drivers and the
maximization procedure.

In general, the Riemann problem (3.2)–(3.4) for given initial data ρi : [ai, bi] → R
possesses a solution on the network Ω in the following sense (see [7]).

Definition 3.2. Let ρi ∈ L∞(Ii) ∩ BV (Ii), i ∈ {1, . . . , N}, be given functions. We say

that a collection of functions ρ = (ρ1, . . . , ρN) :
∏N

i=1 ([0, T ] × Ii) → RN with

ρi ∈ C([0, T ]; L1
loc(Ii)), i ∈ {1, . . . , N}

is an admissible solution to the problem (3.2)–(3.5) if:

(a): ρi : [0, T ] × Ii → R is a weak entropic solution of (3.2) on Ii, i.e.

(3.8)

∫ T

0

∫ bi

ai

(ρi∂tϕ + fi(ρi)∂xϕ) dx dt = 0,

(3.9)

∫ T

0

∫ bi

ai

(|ρi − k| ∂tϕ̃ + sgn (ρi − k) (fi(ρi) − fi(k)) ∂xϕ̃) dx dt ≥ 0,

for every function ϕ : [0, T ] × Ii → R smooth with compact support on (0, T ) ×
(ai, bi), every k ∈ R, and every ϕ̃ : [0, T ] × Ii → R smooth, positive with compact
support on (0, T ) × (ai, bi);

(b): ρi(0, ·) = ρi(·) on Ii for every i ∈ {1, . . . , N};
(c): at each junction J ∈ J , the collection ρ is a weak solution of (3.2) related to

the matrix A(J) ∈ Rm×n at the junction J in the sense of Definition 3.1.

Remark 3.4. As shown in [7], in the presence of discontinuities in the initial data ρi(·) on
Ii, the Rankine–Hugoniot equation (3.8) may not be sufficient to isolate a unique solution
to the corresponding Cauchy problem (3.2)–(3.3). Therefore, the notion of weak solu-
tion of (3.2) must be supplemented with admissibility conditions, motivated by physical
considerations. An admissibility criterion, coming from physical considerations, is the so-
called entropy-admissibility condition, which in this case takes the form of the Kruzkov
entropy admissibility condition (3.9) (see [13]).

Definition 3.3. Let J ∈ J be a junction of the network (I,J ) such that it exactly has
two incoming roads and two outgoing ones. Then, following [7], we say that the traffic
distributional matrix A(J), taking the form

(3.10) A(J) =

(
α β

1 − α 1 − β

)
,

satisfies hypothesis (C) if α, β ∈ (0, 1) and α 6= β.

Remark 3.5. Hypothesis (C) is a rather technical condition, which is important to isolate a
unique solution to the corresponding Riemann problems at junctions. However, as follows
from this definition, if either parameter α or β in (3.10) takes the value in {0, 1}, then the
corresponding junction J has one incoming and two outgoing roads. Hence, in this case
it is reasonably to introduce minor modifications in the original network and redefine the
associated Cauchy problem (3.2)–(3.5).

Taking this into account, we give the following well-known result concerning existence
and uniqueness of the Cauchy problem (3.2)–(3.5) (see [3, 7, 9].



Theorem 3.1. Let Ω = O∩F = (I,J ) be a given network, let {fi : R → R}N

i=1 be a family

of flux-functions satisfying the properties (3.1), and let ρ = {ρi ∈ L∞(Ii) ∩ BV (Ii)}
N

i=1 be
an initial datum. Assume that the road network (I,J ) is such that all its junctions J ∈ J
have at most two incoming roads and two outgoing roads, and every traffic distribution
matrix A(J) belongs to the class C. Then, there exists a unique admissible solution

ρ = (ρ1, . . . , ρN) :
∏N

i=1 ([0, T ] × Ii) → RN to the problem (3.2)–(3.5) such that

(3.11) ρi ∈ C([0, T ]; L∞(Ii) ∩ BV (Ii)), i ∈ {1, . . . , N} ,

(3.12) Tot VIi
(ρi(t, ·)) ≤ TotVIi

(ρi) i ∈ {1, . . . , N} .

4. Statement of Vector Optimization Problem

In what follows, since condition (C) is not closed with respect to the convergence in
space of matrices, we restrict our next consideration to the case of networks Ω = (I,J )
with junctions of degree three, in particular characterized by an incoming road m with
the end bm at the junction and two outgoing roads labeled r, s with ends ar, as at
the junction (see Figure 4.1 for the illustration). According to Coclite, Garavello &
Piccoli [3, 7], at such dispersing junction the flux distribution matrix A(J) takes the form
A(J) = [αm, 1− αm]t, where 0 < αm < 1. Hence we can suppose that at this junction we
have a real-valued control-factor αm ∈ [β, 1 − β] for some small parameter β ∈ (0, 1/2).

Remark 4.1. Note that in this case condition (C) holds true for every junction J . More-
over, this condition is closed with respect to the convergence in the space of matrices
A(J) = [αm, 1 − αm]t, where αm ∈ [β, 1 − β].

Figure 4.1: Labeling of the roads connected to the dispersing junction.

In what follows, we assume that the network (I,J ), which has a total of N roads, is
such that the set J contains K dispersing junctions of degree three. Roughly speaking,
we have a network with K controls α = (α1, . . . , αK). We also assume that on each road
Ii = [ai, bi] ∈ I a velocity v = v(ρ) is subjected to the following constraints:

(4.1) v(ρ) is decreasing continuous on [0, max
1≤i≤N

ρmax,i],

(4.2) 0 ≤ v(ρi) ≤ vi,max, ∀ i ∈ {1, . . . , N} ,

where vi,max ∈ L2(Ii) (1 ≤ i ≤ N) are given functions.
In what follows, we use the following notations:

(S1): A = {α = (α1, . . . , αK) | β ≤ αi ≤ 1 − β, i = 1, . . . , K} ⊂ RK is the set of
admissible control-factors, where β ∈ (0, 1/2) is a given small parameter;

(S2): X = RK × C(0, T ; L∞(Ω) ∩ BV (Ω)) is the control-state space;



(S3): P : RK × C(0, T ; L∞(Ω) ∩ BV (Ω)) → L2(Ω) (1 < p < +∞) is an objective
mapping;

(S4): Λ = {g ∈ L2(Ω) : g(x) ≥ 0 almost everywhere on Ω} is the ordering cone of
positive elements in L2(Ω).

From previous section we know that for every α = (α1, . . . , αK) ∈ A the problem

(4.3)

∫ T

0

∫ bi

ai

(ρi∂tϕ + fi(ρi)∂xϕ) dx dt = 0, ∀ϕ ∈ C∞
0 ((0, T ) × (ai, bi)), ∀ Ii ∈ I,

(4.4)






∫ T

0

∫ bi

ai

(|ρi − d| ∂tϕ̃ + sgn (ρi − d) (fi(ρi) − fi(d)) ∂xϕ̃) dx dt ≥ 0,

∀ d ∈ R, ∀ ϕ̃ ∈ C∞
0 ((0, T ) × (ai, bi)), ϕ̃ ≥ 0, ∀ i ∈ {1, . . . , N} ,

(4.5) ρi(0, ·) = ρi(·) on Ii for every i ∈ {1, . . . , N} ,

(4.6)





fr(ρr(·, a
+
r ) = αkfm(ρm(·, b−m) and fs(ρs(·, a

+
s ) = (1 − αk)fm(ρm(·, b−m)

for each junction Jk ∈ J , which has
an incoming road m with the end bm at Jk

and two outgoing roads r, s with ends ar, as at Jk, ∀ k ∈ {1, . . . , K} ,

has a unique solution

ρ = (ρ1, . . . , ρN) :
N∏

i=1

([0, T ] × Ii) → RN in C(0, T ; L∞(Ω) ∩ BV (Ω))

with properties (3.11)–(3.12).
We associate with (4.2)–(4.6) the vector optimization problem

(4.7) Realize SupΛ,w {P (α, ρ)}

over all α = (α1, . . . , αK) ∈ RK and ρ = (ρ1, . . . , ρN ) ∈ C(0, T ; L∞(Ω)∩BV (Ω)) given by
(4.3)–(4.6), subject to the control constraints α ∈ A and the state constraints (4.1)–(4.2).

Definition 4.1. We say that the problem (4.7) is regular if, for a given family of flux-
functions f = (f1, . . . , fN) with properties (3.1) there exists a pair

(α, ρ) ∈ A× C(0, T ; L∞(Ω) ∩ BV (Ω)),

where ρ = ρ(α) is the corresponding solution of (4.3)–(4.6), such that ρ satisfies the
restrictions (4.1)–(4.2) and P (α, ρ) >Λ z for some element z of L2(Ω). In this case the
pair (α, ρ) is said to be admissible.

We denote by Ξ the set of all admissible pairs to the problem (4.1)–(4.7). It is clear
that Ξ ⊂ A×C(0, T ; L∞(Ω)∩BV (Ω)). In the sequel, we will associate this problem with
the quaternary 〈Ξ, P, Λ, w〉, where w is the weak topology of the objective space L2(Ω).

Remark 4.2. Note that, in general, there is a principle difference between the problem
(4.7) and the vector maximization problem in the classical statement:

(4.8)
Maximize P (α, ρ) with respect to the cone Λ

subject to the constrains (α, ρ) ∈ Ξ.

}

Indeed, let (αeff , ρeff) ∈ Ξ be a (Λ, w)-efficient solution to the problem (4.7). Then
P (αeff , ρeff ) ∈ MaxΛ (clwP (Ξ)). Hence

P (αeff , ρeff) ∈ P (Ξ) and P (αeff , ρeff) ∈ MaxΛ P (Ξ).



Therefore, (αeff , ρeff ) is a solution to the problem (4.8). However, the converse statement
is not true in general. At the same time, this situation is atypical for the scalar case when
we always have the implication

if P (αeff , ρeff) = max
(α,ρ)∈Ξ

P (α, ρ), then

(αeff , ρeff) ∈ Ξ and P (αeff , ρeff) = sup
(α,ρ)∈Ξ

P (α, ρ).

Note also that the vector optimizations problems (4.7) and (4.8) are identical in the
case when Y = R and Λ = R+, and they lead us to the classical statement of a scalar
constrained maximization problem.

We begin with the following concept:

Definition 4.2. An admissible pair (αeff , ρeff) ∈ Ξ is said to be a (Λ, w)-efficient solution
to the problem (4.1)–(4.7) if (αeff , ρeff) realizes the (Λ, w)-supremum of the mapping
P : Ξ → L2(Ω), that is,

P (αeff , ρeff) ∈ SupΛ,w

(α,ρ)∈Ξ P (α, ρ) = SupΛ,w {P (α, ρ) : ∀ (α, ρ) ∈ Ξ} .

We denote by Effw(Ξ; P ; Λ) the set of all (Λ, w)-efficient solutions to the vectorial
problem (4.1)–(4.7), i.e.

(4.9) Effw(Ξ; P ; Λ) =
{

(αeff , ρeff ) ∈ Ξ : P (αeff , ρeff ) ∈ SupΛ,w

(α,ρ)∈Ξ P (α, ρ)
}

.

To conclude this section we give the following observation concerning the topological
properties of the set Ξ of admissible pairs to the vector optimization problem (4.7). Let
τ be the topology on

Y = RK × L2(0, T ; BV (Ω))

defined as the product of the topology of pointwise convergence in RK and the weak
topology of L2(0, T ; BV (Ω)).

Lemma 4.1. Let
{
(αk, ρk) ∈ Ξ

}∞

k=1
be a sequence of admissible pairs to the problem (4.7).

Then there exists a subsequence of
{
(αk, ρk) ∈ Ξ

}∞

k=1
(which will be still denoted by k to

simplify the notation), and a pair (α∗, ρ∗) satisfying

(4.10) (α∗, ρ∗) ∈ Ξ, (αk, ρk)
τ
→ (α∗, ρ∗),

that is, the set Ξ is sequentially closed with respect to the τ -convergence.

Proof. Since (αk, ρk) ∈ Ξ for each k ∈ N, by Theorem 3.1 it follows that the sequence{
(αk, ρk)

}∞

k=1
is uniformly bounded in Y . Then the Compactness Property of BV -

functions (see Theorem 2.1) implies that this sequence is relatively τ -compact. Hence,
extracting, if necessary, a further subsequence, we can assume the existence of a pair
(α∗, ρ∗) in Y such that

αk → α∗ in RK , and ρk ⇀ ρ∗ in L2(0, T ; BV (Ω)).

Our aim is to prove that (α∗, ρ∗) ∈ Ξ. Since α∗ ∈ A, it remains to show that the limit
pair (α∗, ρ∗) satisfies relations (4.2)–(4.6). Then, in view of the Existence Theorem 3.1,

ρ∗ = (ρ∗
1, . . . , ρ

∗
N ) :

∏N
i=1 ([0, T ] × Ii) → RN is a unique admissible solution to the problem

(3.2)–(3.5) in C(0, T ; L∞(Ω) ∩ BV (Ω)) under α = α∗.
Do to so, we consider relations (4.2)–(4.6) with α = αk, ρ = ρk, and study their

limit properties as k → ∞. Since the family of flux-functions f = (f1, . . . , fN) satisfies
the properties (3.1), v(ρ) is decreasing continuous on [0, max1≤i≤N ρmax,i], ρk ⇀ ρ∗ in



L2(0, T ; BV (Ω)), and ρk(t, ·) → ρ(t, ·) strongly in L1(Ω) ∀ t ∈ [0, T ], then the passage to
the limit in

0 ≤ v(ρk
i ) ≤ vi,max, ∀ i ∈ {1, . . . , N} ,(4.11)

∫ T

0

∫ bi

ai

(
ρk

i ∂tϕ + fi(ρ
k
i )∂xϕ

)
dx dt = 0, ∀ϕ ∈ C∞

0 ((0, T ) × (ai, bi)), ∀ Ii ∈ I,(4.12)





∫ T

0

∫ bi

ai

(∣∣ρk
i − d

∣∣ ∂tϕ̃ + sgn (ρk
i − d)

(
fi(ρ

k
i ) − fi(d)

)
∂xϕ̃

)
dx dt ≥ 0,

∀ d ∈ R, ∀ ϕ̃ ∈ C∞
0 ((0, T ) × (ai, bi)), ϕ̃ ≥ 0, ∀ i ∈ {1, . . . , N} ,

(4.13)

ρk
i (0, ·) = ρi(·) on Ii for every i ∈ {1, . . . , N} ,(4.14)





fr(ρ
k
r(·, a

+
r ) = αkfm(ρk

m(·, b−m) and fs(ρ
k
s(·, a

+
s ) = (1 − αk)fm(ρk

m(·, b−m)
for each junction Jk ∈ J , which has

an incoming road m with the end bm at Jk

and two outgoing roads r, s with ends ar, as at Jk, ∀ k ∈ {1, . . . , K} ,

(4.15)

as k → ∞ gives the relations (4.2)–(4.6) with α = α∗ and ρ = ρ∗.
It remans to verify the relation

(4.16) lim
k→∞

{
n∑

i=1

fi(ρ
k
i (·, b

−
i )) is maximum subject to (4.12)–(4.15)

}

=
n∑

i=1

fi(ρ
∗
i (·, b

−
i )) is maximum subject to (4.3)–(4.6) under α = α∗ and ρ = ρ∗

at every junction J ∈ J .

Let J ∈ J be a fixed junction. Since the function L̃(J, α, ρ) := −
n∑

i=1

fi(ρi(·, b
−
i )) is

closed with respect to the τ -convergence, i.e.

lim
l→∞

L̃(J, αl, ρl) = L̃(J, α, ρ),

for every sequence
{
(αl, ρl)

}∞

l=1
τ -converging to (α, ρ), it follows that this function is closed

with respect to the Γ(τ)-convergence. Hence relation (4.16) is the direct consequence of
variational properties of Γ(τ)-limits (see Dal Maso [5]). Thus the τ -limit pair (α∗, ρ∗) is an
admissible solution to vector optimization problem (4.7) and this concludes the proof. �

As direct consequence of this lemma (see also Remark 4.1) we have:

Corollary 4.2. If α ∈ A (see condition (S1) then the map α 7→ ρ(α) is continuous
with respect to the topology of pointwise convergence in RK and the weak topology of
L2(0, T ; BV (Ω)).

Remark 4.3. Note that this conclusion is generally wrong if the control-factors α =
(α1, . . . , αK) are such that 0 < αi < 1, i = 1, . . . , K, that is, when controls at J ∈ J are
restricted only by condition (C).



5. Existence Theorem

Our main interest in this section is to obtain an existence theorem of the (Λ, w)-efficient

solutions for the vector optimization problem (4.7). Let P̂ :
[
RK × C(0, T ; BV (Ω))

]
→ Y •

denote the natural extension of P : Ξ → L2(Ω) to the whole of RK ×C(0, T ; BV (Ω)) (see
(2.2)). Here Y • denotes the semi-extended Banach space L2(Ω)∪{−∞Λ}. We begin with
the following concept of upper semicontinuity for vector-valued mappings:

Definition 5.1. We say that a mapping P : Ξ → L2(Ω) is (Λ, τ×w)-upper semicontinuous
((Λ, τ × w)-usc) at the pair (α0, ρ0) ∈ Ξ if

P (α0, ρ0) ∈ lim supΛ,w

(α,ρ)
τ
→ (α0,ρ0)

P̂ (α, ρ).

A mapping P is (Λ, τ × w)-usc on Ξ, if P is (Λ, τ × w)-usc at each pair of Ξ.

The main motivation to introduce this concept is the following observation:

Proposition 5.1. Assume that the objective space L2(Ω) is partially ordered by the natural
ordering cone of positive elements Λ (see (2.1)). Let Ξ be a nonempty subset of RK ×
C(0, T ; BV (Ω)) and let P : Ξ → L2(Ω) be a given mapping. If (α0, ρ0) ∈ Ξ is any (Λ, w)-
efficient solution to the problem (4.7), then the mapping P : Ξ → L2(Ω) is (Λ, τ ×w)-usc
at this pair.

Proof. Let (α0, ρ0) ∈ Effw(Ξ; P ; Λ). Then P (α0, ρ0) ∈ SupΛ,w

(α,ρ)∈Ξ P (α, ρ). On the other

hand P (α0, ρ0) ∈ Lτ×w(P, α0, ρ0). Hence P (α0, ρ0) ∈ Lτ×w
max (P, α0, ρ0). As a result, by

Definition 2.6, we have P (α0, ρ0) ∈ lim supΛ,w

(α,ρ)
τ
→ (α0,ρ0)

P (α, ρ). This concludes the proof.

�

Before proceeding further, we note that the cone of positive elements Λ in L2(Ω) satisfies
the so-called Daniell property, which means that every increasing net (i.e. i ≤ j =⇒
yi ≤Λ yj), which has an upper bound, weakly converges to its (Λ, w)-supremum.

Definition 5.2. We say that a nonempty subset Y0 of L2(Ω) with an ordering cone Λ is
upper semibounded, if every increasing net {yi} ⊂ Y0 is bounded from above.

As a direct consequence of Definition 5.2, we have the following observation:

Remark 5.1. Let Y0 be a upper semibounded subset of a partially ordered linear space
〈L2(Ω), Λ〉. Then for any z ∈ Y0 the section Y z

0 = ({z} + Λ) ∩ Y0 of Y0 is bounded from
above, that is, there exists an element z∗ ∈ L2(Ω) such that z∗ ≤Λ y for all y ∈ Y z

0 .
Hence, the upper semiboundedness of the subset Y0 implies the upper semiboundedness
of its weak closure clw Y0. On the other hand, in contrast to the scalar case for vector
optimization problem (4.7) with a sequentially τ -compact subset Ξ and (Λ, τ ×w)-upper
semicontinuous objective mapping P : Ξ → L2(Ω), the image set P (Ξ) can be unbounded
from above. It means that, in general, there does not exist an element y∗ ∈ L2(Ω) such
that P (Ξ) ⊂ {y∗} − Λ.

We are able to prove the main result of this section.

Theorem 5.2. Assume that the vector optimization problem (4.7) is regular. Let P : Ξ →
L2(Ω) be a given (Λ, τ ×w)-upper semicontinuous mapping. Then the vector optimization
problem (4.7) has a non-empty set of (Λ, w)-efficient solutions.

Proof. Since the proof of this theorem is rather technical, we divide it into several steps.
Step 1. First, we show that the image set P (Ξ) is upper semibounded in the sense

of Definition 5.2. Indeed, let us assume the converse. Then, there exists a sequence



{
(αk, ρk)

}∞

k=1
⊂ Ξ such that the corresponding image sequence

{
yk = P (αk, ρk)

}∞

k=1
⊂

P (Ξ) is increasing (i.e., yk ≤Λ yk+1 ∀ k ∈ N) and unbounded from above in L2(Ω). Hence
∞Λ ∈ Lw {yk}, where Lw {yk} denotes the set of all its cluster points with respect to the
weak topology of L2(Ω). By Lemma 4.1, the sequence

{
(αk, ρk)

}∞

k=1
⊂ X∂ is sequentially

τ -compact, so we may suppose that (αk, ρk)
τ
→ (α∗, ρ∗) in Y = RK × L2(0, T ; BV (Ω)),

where (α∗, ρ∗) is some pair of Ξ. Since the sequence
{
P (αk, ρk)

}∞

k=1
is unbounded from

above, we have {∞Λ} ∈ Lτ×w
max (P, α∗, ρ∗). Hence, by Definition 2.6,

lim supΛ,w

(α,ρ)
τ
→ (α∗,ρ∗)

P (α, ρ) = {∞Λ} .

On the other hand, taking into account the (Λ, τ × w)-lower semicontinuity property of
P , we obtain

P (α∗, ρ∗) ∈ lim supΛ,w

(α,ρ)
τ
→ (α∗,ρ∗)

P (α, ρ)

which contradicts the previous conclusion. This concludes Step 1.
Step 2. In this part we prove that the set SupΛ,w

(α,ρ)∈Ξ P (α, ρ) is nonempty. We show that

there exists at least one increasing sequence {yk}
∞
k=1 ⊂ P (Ξ) such that

yk ⇀ y∗ ∈ SupΛ,w

(α,ρ)∈Ξ P (α, ρ) = SupΛ,w {P (α, ρ) : ∀ (α, ρ) ∈ Ξ} .

Let y be an arbitrary element of clw P (Ξ). To begin with, we show that, for any neigh-
bourhood of zero Vw in the weak topology of L2(Ω), there exists an element yV ∈ clw P (Ξ)
such that

(5.1) y ≤Λ yV and
({

yV
}

+ Λ \ {0}
)
∩

(
clw P (Ξ) \ (Vw +

{
yV

}
)
)

= ∅.

Having assumed the converse, we suppose the existence of a sequence {yk}
∞
k=1 ⊂ clw P (Ξ)

such that

y1 ∈ P (Ξ), yk+1 ∈ ({yk} + Λ \ {0}) ∩ (clw P (Ξ) \ (Vw + {yk})) ∀ k ∈ N.

Since yk+1 ∈ {yk}+Λ \ {0}, this sequence is increasing. Taking into account Remark 5.1,
the set clw P (Ξ) is upper semibounded. Therefore, there exists an element y∗ ∈ L2(Ω) such
that yk ≤Λ y∗ for all k ∈ N. Hence, by Daniell property, this sequence weakly converges
to its (Λ, w)-supremum: yk ⇀ ỹ ∈ L2(Ω). However, this contradicts the condition yk+1 ∈
clw P (Ξ) \ (Vw + {yk}) ∀ k ∈ N. Thus, the choice by the rule (5.1) is possible for any
neighbourhood Vw.

Let {Vk}
∞
k=1 be a system of weak neighbourhoods of zero in L2(Ω) such that Vk+1 ⊂ Vk

for every k ∈ N, and for any weak neighbourhood V(0) in L2(Ω) there is an integer
k∗ ∈ N such that Vk∗ ⊆ V(0). Then, using the choice rule (5.1), we can construct a
sequence {uk}

∞
k=1 ⊂ clw P (Ξ), where u1 is an arbitrary element of P (Ξ), as follows

(5.2) uk−1 ≤Λ uk and ({uk} + Λ \ {0}) ∩ (clw P (Ξ) \ (Vk + {uk})) = ∅, ∀ k ≥ 2.

Since uk+1 ∈ {uk} + Λ it follows that

uk+1 ∈ clw P (Ξ) and uk+1 6∈ clw P (Ξ) \ (Vk + {uk}).

Hence, in view of Daniell property, {uk}
∞
k=1 is the τ -converging increasing sequence. As a

result, there is an element

u∗ ∈ SupΛ,w {uk ∈ clw P (Ξ) : ∀ k ∈ N}

such that uk ⇀ u∗. It is clear that u∗ ∈ clw P (Ξ). Our aim is to prove that u∗ ∈
SupΛ,w {P (α, ρ) : ∀ (α, ρ) ∈ Ξ}. To do so, we assume that there exists an element

q ∈ SupΛ,w {P (α, ρ) : ∀ (α, ρ) ∈ Ξ}



such that u∗ ≤Λ q. Since uk ≤Λ u∗ for all k ∈ N , it follows that uk ≤Λ q for all k ∈ N .
Then (5.2) ensures that

(5.3) ({q} + Λ \ {0}) ∩ (clw P (Ξ) \ (Vk + {uk})) = ∅, ∀ k ∈ N.

Hence (5.3) and the fact that q ∈ clw P (Ξ) imply q ∈ Vk + {uk} for every k ∈ N, that is,
uk ⇀ q in L2(Ω). Thus u∗ = q and then the Step 2 is finished.

Step 3: We show that the set Effw(Ξ; P ; Λ) is nonempty. Let ξ be any element of

SupΛ,w

(α,ρ)∈Ξ P (α, ρ). Then, by Definition 2.5, there exists a sequence {yk}
∞
k=1 ⊂ L2(Ω) such

that yk ⇀ ξ in L2(Ω). We define a sequence
{
(αk, ρk)

}∞

k=1
⊂ Ξ as follows (αk, ρk) =

P−1(yk) for all k ∈ N. Since the set Ξ is sequentially τ -compact (see Lemma 4.1), we may

suppose that there exists a pair (α0, ρ0) ∈ Ξ such that (αk, ρk)
τ

−→ (α0, ρ0) in Y . Hence
ξ ∈ Lτ×w(P, α0, ρ0), and we get

Lτ×w(P, α0, ρ0) ∩ SupΛ,w

(α,ρ)∈Ξ P (α, ρ) 6= ∅.

Then, due to the (Λ, τ×w)-upper semicontinuity of the mapping P on Ξ and Definition 2.6,
we obtain

P (α0, ρ0) ∈ lim supΛ,w

(α,ρ)
τ
→ (α0,ρ0)

P (α, ρ) = Lτ×w(P, α0, ρ0) ∩ SupΛ,w

(α,ρ)∈Ξ P (α, ρ).

Thus, on the one hand, P (α0, ρ0) ∈ Lτ×w(P, α0, ρ0), which implies the equality

P (α0, ρ0) = ξ = weak− lim
k→∞

yk.

On the other hand, ξ ∈ SupΛ,w

(α,ρ)∈Ξ P (α, ρ). Hence, (α0, ρ0) ∈ Effw(Ξ; P ; Λ) and we obtain

the required result. The proof is complete. �

6. Scalarization of Traffic Optimization Problem

Typically, scalarization means the replacement of a vector optimization problem by a
suitable scalar optimization problem. It is a fundamental principle in vector optimization
that optimal (minimal) elements of a subset of a partially ordered linear space can be
characterized as optimal solutions of certain scalar optimization problems. Our prime
interest in this section is to describe the set Effw(Ξ; P ; Λ) of (Λ, w)-efficient solutions to
the traffic optimization problem (4.7), which involves some topological properties of the
objective mapping P and the space L2(Ω). In order to do it, we will consider the problem
of the scalar representation of vector optimization problem (4.7) with a (Λ, τ ×w)-upper
semicontinuous mapping P : Ξ → L2(Ω), using the “simplest” method of the “weighted
sum”.

To begin with, we introduce some notation.

Definition 6.1. We say that λ ∈ L2(Ω) is a quasi-interior point of the cone of positive
elements Λ if λ(x) ≥ 0 almost everywhere in Ω and

∫
Ω

b(x)λ(x) dx > 0 for all b ∈ Λ \ {0}.

We denote by Λ♯ the set of all quasi-interior points to Λ. It is clear that

Λ♯ =
{
λ ∈ L2(Ω) : λ(x) > 0 almost everywhere in Ω

}

(for more details we refer to [12]). In what follows, we associate with the vector optimiza-
tion problem (4.7) the following scalar minimization problem

Pλ(α, ρ) =

∫

Ω

P (α, ρ)λ(x) dx → sup(6.1)

subject to (α, ρ) ∈ Ξ ⊂ RK × C(0, T ; BV (Ω)),



where λ is an element of the cone (2.1).
The main property of this problem can be characterized as follows:

Theorem 6.1. Let P : Ξ → L2(Ω) be a given objective mapping. Assume that there are
a pair (α0, ρ0) ∈ Ξ and an element λ ∈ Λ♯ such that

(α0, ρ0) ∈ Argmax
(α,ρ)∈Ξ

∫

Ω

P (α, ρ)λ(x) dx.

Then (α0, ρ0) is a (Λ, w)-efficient solution to the problem (4.7).

Proof. By the initial assumptions, we have

(6.2) Pλ(α
0, ρ0) − Pλ(α, ρ) =

∫

Ω

(
Pλ(α

0, ρ0) − Pλ(α, ρ)
)
λ(x) dx ≥ 0, ∀ (α, ρ) ∈ Ξ.

Let z be any element of the image set clw P (Ξ). Then there exists a sequence
{
(αk, ρk)

}∞

k=1
⊂ Ξ such that P (αk, ρk) ⇀ z in L2(Ω) as k → ∞.

Hence, in view of (6.2), we get

(6.3)

∫

Ω

(
Pλ(α

0, ρ0) − Pλ(α
k, ρk)

)
λ(x) dx ≥ 0, ∀ k ∈ N.

Passing to the limit in (6.3) as k → ∞, we obtain

(6.4)

∫

Ω

(
Pλ(α

0, ρ0) − z
)
λ(x) dx ≥ 0, ∀ z ∈ clw P (Ξ).

Let us assume that (α0, ρ0) 6∈ Effw(Ξ; P ; Λ). Then there exists an element h ∈ clw P (Ξ)
such that h >Λ P (α0, ρ0). So, h − P (α0, ρ0) ∈ Λ \ {0}. Hence, by Definition 6.1,

∫

Ω

(
h − P (α0, ρ0)

)
λ(x) dx > 0,

and we come to a contradiction with (6.4). So, (α0, ρ0) ∈ Effw(Ξ; P ; Λ) and this concludes
the proof. �

As an evident consequence of this result, we have the following corollary.

Corollary 6.2. Under suppositions of Theorem 6.1, we have

(6.5)
⋃

λ∈Λ♯

Argmax
(α,ρ)∈Ξ

∫

Ω

P (α, ρ)λ(x) dx ⊆ Effw(Ξ; P ; Λ).

We note that the objective mapping in Theorem 6.1 does not possesses (Λ, τ × w)-
upper semicontinuity property, in general. So the question is about the solvability of the
associated scalar minimization problems (6.1) with λ ∈ Λ♯. Following the direct method
in the Calculus of Variations, the constrained maximization problem (6.1) has a nonempty
set of solutions provided Ξ is a τ -compact subset and

Pλ(·, ·) =

∫

Ω

P (·, ·)λ(x) dx : Ξ → R

is a proper upper τ -semicontinuous function. However, the distinguishing feature of Vec-
tor optimization problems (4.7) is the fact that with any (Λ, τ ×w)-upper semicontinuous
mapping P : Ξ → L2(Ω), which is neither upper semicontinuous nor quasi-upper semi-
continuous on Ξ, there can be always associated a scalar minimization problem (6.1) for
which the corresponding cost functional Pλ : Ξ → R is not upper τ -semicontinuous on



Ξ. Indeed, let (α0, ρ0) be a pair of Ξ where the quasi-upper semicontinuity of P is failed.
Then there exists at least one element a∗ ∈ clw (P (Ξ)) such that

a∗ ∈ lim supΛ,w

(α,ρ)
τ
→ (α0,ρ0)

P (α, ρ), P (α0, ρ0) ∈ lim supΛ,w

(α,ρ)
τ
→ (α0,ρ0)

P (α, ρ),(6.6)

and a∗ 6= P (α0, ρ0).

Let
{
(αk, ρk)

}∞

k=1
⊂ Ξ be a sequence such that (αk, ρk)

τ
→ (α0, ρ0) in Y and P (αk, ρk) ⇀

a∗ in L2(Ω). Since a∗ ≮Λ P (α0, ρ0) it follows that P (α0, ρ0) − a∗ 6∈ Λ and hence there
exists a vector λ∗ ∈ Λ such that∫

Ω

(
P (α0, ρ0) − a∗

)
λ∗(x) dx < 0.

As a result, we have

lim inf
k→∞

Pλ∗(αk, ρk) = lim
k→∞

∫

Ω

P (αk, ρk)λ∗(x) dx =

=

∫

Ω

a∗(x)λ∗(x) dx >

∫

Ω

P (α0, ρ0)λ∗(x) dx = Pλ∗(α0, ρ0).

Thus the upper τ -semicontinuity property for Pλ∗ does not hold at the pair (α0, ρ0).
This fact motivates the introduction of the the following notion:

Definition 6.2. Let P : Ξ → L2(Ω) be a given mapping. The cone

(6.7) Λτ
P := {λ ∈ Λ : Pλ is upper τ -semicontinuous on Ξ}

is called the cone of τ -semicontinuity for the mapping P .

As a result, Theorem 6.1 can be sharped as follows:

Theorem 6.3. Let P : Ξ → L2(Ω) be a (Λ, τ × w)-upper semicontinuous mapping.
Assume that the vector optimization problem (4.7) is regular and Λτ

P \ 0 6= ∅. Then

(6.8) Argmax
(α,ρ)∈Ξ

∫

Ω

P (α, ρ)λ(x) dx ∩ Effw(Ξ; P ; Λ) 6= ∅, ∀ λ ∈ Λτ
P \ 0.

Proof. As follows from Theorem 5.2, under above assumptions, we have

Effw(Ξ; P ; Λ) 6= ∅.

Let λ be any element of Λτ
P \0. Then, by the direct method in the Calculus of Variations,

we obtain

Argmax
(α,ρ)∈Ξ

∫

Ω

P (α, ρ)λ(x) dx 6= ∅.

If λ ∈ Λ♯ then relation (6.8) is obvious by Theorem 6.1. So, we suppose that λ ∈
Λτ

P \
(
Λ♯ ∪ 0

)
. Assume that

Argmax
(α,ρ)∈Ξ

∫

Ω

P (α, ρ)λ(x) dx * Effw(Ξ; P ; Λ).

Then there exists a pair (α∗, ρ∗) ∈ Ξ such that

(6.9) (α∗, ρ∗) ∈ Argmax
(α,ρ)∈Ξ

∫

Ω

P (α, ρ)λ(x) dx,

(6.10) (α∗, ρ∗) 6∈ Effw(Ξ; P ; Λ).



Hence, by (6.9), there exists an element

y∗ ∈ MaxΛ (clwP (Ξ)) ⊆ clwP (Ξ) such that y∗ >Λ P (α∗, ρ∗).

However, in view of (6.10), this leads us to the equality

(6.11) Pλ(α
∗, ρ∗) =

∫

Ω

P (α∗, ρ∗)λ(x) dx =

∫

Ω

y∗λ(x) dx.

Let
{
(αk, ρk)

}∞

k=1
be a sequence in Ξ such that

(6.12) P (αk, ρk) ⇀ y∗ in L2(Ω) as k → ∞.

Since the set Ξ is sequentially τ -compact (see Lemma 4.1), we may suppose that there

exists a pair (α0, ρ0) ∈ Ξ such that (αk, ρk)
τ

−→ (α0, ρ0) in Y . On the other hand,

y∗ ∈ MaxΛ (clwP (Ξ)). Hence y∗ ∈ SupΛ,w

(α,ρ)∈Ξ P (α, ρ) by Definition 4.2. As a result, we

have (α0, ρ0) ∈ Effw(Ξ; P ; Λ). Taking now into account the upper τ -semicontinuity of
the functional Pλ : Ξ → R, we get

∫

Ω

P (α0, ρ0)λ(x) dx ≥ lim inf
k→∞

∫

Ω

P (αk, ρk)λ(x) dx
by (6.12)

=

∫

Ω

y∗λ(x) dx.

Then, combining this with (6.11), we obtain
∫

Ω

P (α0, ρ0)λ(x) dx ≥

∫

Ω

P (α∗, ρ∗)λ(x) dx,

i.e.

(α0, ρ0) ∈ Argmax
(α,ρ)∈Ξ

∫

Ω

P (α, ρ)λ(x) dx.

Thus, we have shown that there exists at least one pair (α0, ρ0) ∈ Ξ, which is a joint point
of the sets

Argmax
(α,ρ)∈Ξ

∫

Ω

P (α, ρ)λ(x) dx and Effw(Ξ; P ; Λ),

respectively. This completes the proof. �

As an evident consequence of this theorem, we have the following corollary:

Corollary 6.4. Assume that in addition to the conditions of Theorem 6.3 there exists an
element λ ∈ Λτ

P \ 0 such that the supremum in the scalar problem

(6.13) Maximize Pλ(α, ρ) =

∫

Ω

P (α, ρ)λ(x) dx subject to (α, ρ) ∈ Ξ

attains at a unique pair (α∗, ρ∗) ∈ Ξ. Then (α∗, ρ∗) ∈ Effw(Ξ; P ; Λ).

Remark 6.1. Typically in scalar optimization problems for traffic on road networks it
is assumed that some cost functionals to measure the traffic behaviour are defined. A
first functional F1 measures the average velocity of drivers on the network, the second F2

measures the expected mean traveling time on the network and finally the third F3 is the
total flux through the network. The analysis of the performances of the network through
these functionals is a very delicate problem. However the goal of any driver is to find a
fasten way through the network with respect to the traffic and road conditions. Having
based on assumptions of the LWR model and used a linear density-velocity relation

vi(ρi) = vmax,i

(
1 −

ρi

ρmax,i

)
=⇒ fi(ρi) = ρivmax,i

(
1 −

ρi

ρmax,i

)
,



this implies a low density on each road. Indeed, since the flux functions are concave,
high densities are related to small velocities vi, i.e. ρivi = fi(ρi). Therefore, in the scalar
statement a well known measure for a better utilization of a single road Ii = [ai, bi] of the
network is the time and space averaged density given by the following expression

∫ T

0

∫ bi

ai

ρi(t, x) dxdt,

where ρi ∈ C([0, T ]; L∞(Ii) ∩ BV (Ii)) is the density approximation on each road i ∈
{1, . . . , N}. Hence, summing up for all roads in the network a cost functional can be
defined as

F4 (α, ρ) =

N∑

i=1

∫ T

0

∫ bi

ai

ρi(t, x) dxdt −→ inf .

Thus the functional F4 measures the average time and space densities in the whole net-
work. So the “fasten” way through the network can be obtained by minimization F4.
Note that the functional F4 is rather popular in the traffic engineering community [14].
Minimization of F4 yields a traffic situation with a “large” average speed.

However, as follows from (6.1), the cost functional F4 can be obtained as particular
case of the associated scalar optimization problems (6.13) if

P (α, ρ) = −

∫ T

0

ρ(t, x) dt, λ(x) = 1 a.e. on Ω.

Then

Pλ(α, ρ) :=

∫

Ω

P (α, ρ)λ(x) dx = −
N∑

i=1

∫ T

0

∫ bi

ai

ρi(t, x) dxdt.

Note also that, due to the initial suppositions (3.1), we have the following property:

P (αk, ρk) ⇀ P (α, ρ) in L2(Ω)

provided (αk, ρk)
τ

−→ (α∗, ρ∗) in Y = RK × L2(0, T ; BV (Ω)), that is, the objective
mapping P : Ξ → L2(Ω) is (Λ, τ × w)-upper semicontinuous. Hence Λτ

P ≡ Λ♯ and if the
original vector optimization problem (4.7) is regular, then

Argmax
(α,ρ)∈Ξ

Pλ(α, ρ) 6= ∅ and Argmax
(α,ρ)∈Ξ

Pλ(α, ρ) ⊆ Effw(Ξ; P ; Λ).

7. Generalized Solutions to Traffic Optimization Problem

Let λ be an arbitrary element of the cone Λ. Denote by

Sol(Ξ; Pλ) := Argmax
(α,ρ)∈Ξ

Pλ(α, ρ)

the solution set to the scalar problem (6.13). We recall that the problem (6.13) is said to
be well-posed in the generalized sense when every maximizing sequence

{
(αk, ρk)

}∞

k=1
⊂

Ξ (i.e. such that Pλ(α
k, ρk) → sup(α,ρ)∈Ξ Pλ(α, ρ)) has a subsequence τ -converging to

some pair of Sol(Ξ; Pλ). We recall also a generalization of the above mentioned notion.
The problem (6.13) is said to be well-set when every maximizing sequence contained in
Ξ \ Sol(Ξ; Pλ) has a τ -cluster point in Sol(Ξ; Pλ). However, as will follows from the
arguments of this section, the problem (6.13) can be neither well-posed nor well-set, in
general. The main reason is the (Λ, τ ×w)-upper semicontinuity property of the objective
mapping P which is the weakened property of upper semicontinuity for vector-valued
mappings in Banach spaces.



In many applications it has a sense to weaken the requirement on efficient solutions
to the vector optimization problem (4.7). In particular, we may let that the objective
mapping to attain its efficient supremum on the set Ξ with some error. On the other
hand, the set of (Λ, w)-efficient solutions to such problem can possibly be empty, i.e., the
efficient supremum of the objective mapping is often unattainable on the given set Ξ.
Nevertheless, the absence of its supremum does not mean that the vector optimization
problem makes no sense, since its efficient supremum exists and hence can be approached
with some accuracy.

Definition 7.1. We say that a sequence
{
(αk, ρk)

}∞

k=1
⊂ Ξ is maximizing to the traf-

fic optimization problem (4.7) if P (αk, ρk) ⇀ ξ in L2(Ω), where ξ is an element of

SupΛ,w

(α,ρ)∈Ξ P (α, ρ).

Definition 7.2. We say that the vector optimization problem (4.7) is well-posed in the
Tikhonov sense with respect to the τ -topology of Y if it is certainly solvable and every
maximizing sequence

{
(αk, ρk)

}∞

k=1
⊂ Ξ has a subsequence τ -converging to some pair of

Effw(Ξ; P ; Λ). In this case a maximizing sequence is called a Tikhonov maximizing se-
quence. We also say that the vector optimization problem (4.7) is well-set in the Tikhonov
sense with respect to the τ -topology of Y , if it is certainly solvable and every maximizing
sequence contained in Ξ \ Effw(Ξ; P ; Λ) has a τ -cluster pair in Effw(Ξ; P ; Λ).

Note that having a Tikhonov maximizing sequence, we can guarantee both the prox-
imity of the corresponding values of the objective mapping to its efficient supremum and
the proximity of the approximation itself to one of the (Λ, w)-efficient solutions of the
problem. Nevertheless it should be stressed that even in simple applied problems the con-
struction of Tikhonov maximizing sequences and corresponding Tikhonov approximate
solutions usually turn out to be a very complicated and sometimes unsolvable problem.
In view of this, it is reasonable to weaken the requirements on approximate solutions to
the vector optimization problem (4.7).

Definition 7.3. We say that a pair (α∗, ρ∗) ∈ Ξ is a (τ, w)-generalized solution to the
traffic optimization problem (4.7) if there exist a sequence

{
(αk, ρk)

}∞

k=1
⊂ Ξ and an

element ξ ∈ SupΛ,w

(α,ρ)∈Ξ P (α, ρ) such that (αk, ρk)
τ
⇀ (α∗, ρ∗) in Y and P (αk, ρk) ⇀ ξ in

L2(Ω).

Thus, a vector optimization problem may have an approximate solution even in the
absence of its solvability. It is clear that any Tikhonov approximate solution to the
problem (4.7) is also a (τ, w)-generalized solution. However, even if a (Λ, w)-efficient
solution is available ((αeff , ρeff ) ∈ Effw(Ξ; P ; Λ), we cannot guarantee the proximity of
a (τ, w)-generalized solution (α∗, ρ∗) to Effw(Ξ; P ; Λ) in the τ -topology of Y .

We denote by GenEffτ,w(Ξ; P ; Λ) the set of all (τ, w)-generalized solutions to the prob-
lem (4.7). It is clear that

Effw(Ξ; P ; Λ) ⊆ GenEffτ,w(Ξ; P ; Λ).

However, the inverse inclusion

GenEffτ,w(Ξ; P ; Λ) ⊂ Effw(Ξ; P ; Λ)

does not generally hold. As an evident consequence of Theorem 5.2, we have the following
obvious result:



Proposition 7.1. Under suppositions of Theorem 5.2, the traffic optimization problem
(4.7) is well-set in the Tikhonov sense with respect to τ -topology of Y , and in addition

GenEffτ,w(Ξ; P ; Λ) = Effw(Ξ; P ; Λ).

To obtain the sufficient conditions which would guarantee that the set of (τ, w)-genera-
lized solutions to the problem (4.7) is nonempty, we make use of the scalarization of this
problem in the form (6.1).

Let sc−τ Pλ : Ξ → R denote the upper τ -semicontinuous envelope of the functional

Pλ(α, ρ) =

∫

Ω

P (α, ρ)λ(x) dx with some λ ∈ Λ,

that is, sc−τ Pλ is the smallest upper τ -semicontinuous functional minorized by Pλ on Ξ.
Then, following the direct method in the Calculus of Variations, we get:

Proposition 7.2. Let Ξ be a nonempty subset of A × C(0, T ; L∞(Ω) ∩ BV (Ω)). Then
for a fixed λ ∈ Λ every maximizing sequence for the scalar problem

sup
(α,ρ)∈Ξ

sc−τ Pλ(α, ρ)

has a τ -cluster pair which is a maximizer of sc−τ Pλ on Ξ, i.e., Sol(Ξ; sc−τ Pλ) 6= ∅.

We are now ready to prove the main result of this section.

Theorem 7.3. Assume that the vector optimization problem (4.7) is regular. Let P :
Ξ → L2(Ω) be a given objective mapping (not necessary (Λ, τ × w)-upper semicontinuous
on Ξ). Then the following inclusion is valid:

(7.1)
⋃

λ∈Λ♯

Argmax
(α,ρ)∈Ξ

sc−τ Pλ(α, ρ) ⊆ GenEffτ,w(Ξ; P ; Λ).

Proof. To begin with, we note that for the cone of positive elements Λ in L2(Ω) we have
that cor (Λ) ⊂ Λ♯ (see [12]). Hence, the quasi interior Λ♯ of Λ is nonempty. Let λ be any
element of Λ♯. Then, by Proposition 7.2, there exists at least one pair (α∗, ρ∗) ∈ Ξ such
that

(7.2) (α∗, ρ∗) ∈ Argmax
(α,ρ)∈Ξ

sc−τ Pλ(α, ρ).

Since sc−τ Pλ(α, ρ) is the upper τ -semicontinuous envelope of the functional

Pλ(α, ρ) =

∫

Ω

P (α, ρ)λ(x) dx,

it follows that there exists a sequence
{
(αk, ρk)

}∞

k=1
⊂ Ξ such that (αk, ρk)

τ
→ (α∗, ρ∗)

and

(7.3) lim
k→∞

∫

Ω

P (αk, ρk)λ(x) dx = sc−τ Pλ(α
∗, ρ∗)

by condition (7.2)

≥ sc−τ Pλ(α, ρ) ≥

∫

Ω

P (α, ρ)λ(x) dx, ∀(α, ρ) ∈ Ξ.

Since Λ♯ ∪ 0 is a nontrivial convex cone in L2(Ω) with nonempty algebraical interior, it
follows that it is a reproducing cone in L2(Ω), that is,

[
Λ♯ ∪ 0

]
−

[
Λ♯ ∪ 0

]
= L2(Ω) (see



[12]). Then, following Peressini [16] and Borwein [2], we get that in L2(Ω) the ordering
cone Λ is normal with respect to the norm topology of L2(Ω), that is,

(7.4) y <Λ z =⇒ ‖y‖L2(Ω) < ‖z‖L2(Ω).

Now, turning back to the formula (7.3), we have that there exist an integer k̂ ∈ N and an
element ŷ ∈ L2(Ω) such that

∫

Ω

P (αk, ρk)λ(x) dx >

∫

Ω

ŷ(x)λ(x) dx, ∀ k > k̂.

Since λ ∈ Λ♯, this implies P (αk, ρk) >Λ ŷ for all k > k̂. Using the normality property
(7.4) of the cone Λ for the norm topology of L2(Ω), we come to the conclusion: there

exists a constant C > 0 such that ‖P (αk, ρk)‖L2(Ω) ≤ C for all k > k̂. Hence, without

loss of generality, we may suppose that the sequence
{
P (αk, ρk)

}∞

k=1
is bounded in L2(Ω).

So, by Banach-Alaoglu Theorem, there exist an element η ∈ L2(Ω) and a subsequence of{
P (αk, ρk)

}∞

k=1
(still denoted by suffix k) such that P (αk, ρk) ⇀ η in L2(Ω) as k → ∞.

For now we assume that

(7.5) (α∗, ρ∗) 6∈ GenEffτ,w(Ξ; P ; Λ).

Then, as follows from Definition 7.3, η 6∈ SupΛ,w

(α,ρ)∈Ξ P (α, ρ). Hence, there can be found

an element ξ ∈ SupΛ,w

(α,ρ)∈Ξ P (α, ρ) such that ξ >Λ η. Therefore ξ − η ∈ Λ \ {0}, and using

the fact that λ ∈ Λ♯, we just come to the inequality

(7.6)

∫

Ω

η(x)λ(x) dx <

∫

Ω

ξ(x)λ(x) dx

which is equivalent to

lim
k→∞

∫

Ω

P (αk, ρk)λ(x) dx <

∫

Ω

ξ(x)λ(x) dx.

On the other hand, for the element ξ ∈ SupΛ,w

(α,ρ)∈Ξ P (α, ρ) there exists a sequence
{
(α̃ k, ρ̃ k)

}∞

k=1
⊂ Ξ such that P (α̃ k, ρ̃ k) ⇀ ξ in L2(Ω).

Since the set Ξ is sequentially τ -compact, we may suppose that (α̃ k, ρ̃ k)
τ
→ (α̃∗, ρ̃∗) ∈ Ξ.

Then, by inequality (7.3), we deduce

(7.7) lim
k→∞

∫

Ω

P (αk, ρk)λ(x) dx ≥

∫

Ω

P (α̃ i, ρ̃ i)λ(x) dx, ∀ i ∈ N.

Passing to the limit in (7.7) as i → ∞, we get

lim
k→∞

∫

Ω

P (αk, ρk)λ(x) dx ≥

∫

Ω

ξ(x)λ(x) dx.

However, this contradicts (7.6) and hence (7.5). Thus (α∗, ρ∗) is the (τ, w)-generalized
solution to the traffic vector optimization problem (4.7). �
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