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Abstract. We discuss the optimal control problem (OCP) stated as the min-

imization of the queues and the difference between the effective outflow and

a desired one for the continuous model of supply chains, consisting of a PDE
for the density of processed parts and an ODE for the queue buffer occupancy.

The main goal is to consider this problem with pointwise control and state

constraints. Using the so-called Henig delation, we propose the relaxation ap-
proach to characterize the solvability and regularity of the original problem by

analyzing the corresponding relaxed OCP.

1. Introduction. The aim of this article is to analyze an optimal control problem
for a coupled system of partial and ordinary differential equations describing the
dynamic of supply chains. Here we focus on the model introduced in [15] by Goet-
tlich, Herty and Klar (briefly GHK model), where supply chains are concatenations
of suppliers. The latter is composed of a processor for assembling and construc-
tion and a buffer for unprocessed parts, called queue. The evolution of parts inside
the processor is given by a conservation law for the density of parts, ρ(t, x). The
dynamics of each queue is given by an ODE for the queue buffer occupancy q(t).
Since an important matter for applications is to reduce the dead times, to avoid
bottlenecks and improve productivity, it leads to the reasonable questions: can we
control the processing rates, or the processing velocities, or the input flow in such
way to minimize queues and to achieve an expected outflow?
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It is worth to note that the mathematical simulation of supply chain is character-
ized by (at least) two different approaches: discrete event simulations, considering
trajectories of individual parts, and continuous models, based either on ordinary
(see [5], [18]) or on partial differential equations. The first continuous model for
supply chains, based on partial differential equations, was introduced by D. Arm-
bruster et al. (see [1]). The authors, taking the limit on the number of parts and
suppliers, obtained a conservation law for the part density, with flux given by the
minimum between the physical flow and the maximal processing capacity. In the
meantime, it is not easy matter to define solutions to the model of [1], also because
of delta waves, thus other fluid-dynamic models for supply chains have been intro-
duced in [3], [8], [9] and [15]. The works [3], [8], [9] and [10] deal with a mixed
continuum-discrete model consisting of a system of two conservation laws, one for
the density part and one for the processing rate, and Riemann solvers at fixed nodes.
A comprehensive description of such models can be found in the recent monograph
[6].

In [16] two optimal control problems for supply chains on networks were con-
sidered. First the problem of determining optimal velocities for each individual
processing unit is addressed for a supply chain consisting of three processors. Then,
given a supply network with a vertex of dispersing type, the distribution rate has
been controlled in such way to minimize queues.

A variational method is proposed for the modeling, computation, and optimiza-
tion of a class of continuous supply chain networks in [17]. The optimization prob-
lems are formulated as mixed integer programs, requiring much less computational
effort than the one based on the PDE-ODE system. In a test network for both
cases of buffers with finite or infinite capacity the total throughput of the network
within the time horizon has been maximized fixing the inflow and using as control
variables the time-varying flow allocation. Moreover the problem of maximizing the
throughput of the network while keeping the queuing at a minimum level has been
faced controlling not only the allocation rates, but also the inflow profile.

In [11] and [12], the authors consider the input flow as a control in order to min-
imize queues and provide the best approximation of a desired supply chain outflow.
As a result, the optimization is realized defining a cost functional J in the form of
two parts. The first is simply the time integral of queue buffers occupancies, while
the second is the quadratic distance of the outflow from the desired one. Having
used the concept of generalized tangent vectors to a piecewise control representing
shifts of discontinuities, the authors prove the existence of an optimal control and
show that this solution can be defined on the whole supply chain for bounded vari-
ation inflows.

A nonlinear and non local PDE modeling a factory whose cycle time depends
nonlinearly on the work in progress is considered in [23]. One of the few ways to
influence the output of such a factory is by adjusting the start rate in a time depen-
dent manner. Two prototypical control problems for this case are investigated: i)
demand tracking where the start rate that generates an output rate which optimally
tracks a given time dependent demand rate is determined and ii) backlog tracking
which optimally tracks the cumulative demand. The method is based on the formal
adjoint method for constrained optimization, incorporating the hyperbolic PDE as
a constraint of a nonlinear optimization problem.

A supply network where the flow of parts can be controlled at the vertices of the
network is considered in [20]. Discrete adjoint equations which are subsequently
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validated by the continuous adjoint calculus are derived. The continuous optimal-
ity system is obtained and it was shown that the mixed-integer formulation is also
a valid discretization of the discretized continuous optimality system, i.e., both
approaches discretize-then-optimize and optimize-then-discretize lead to the same
continuous optimal control if the discretization width tends to zero.

The characteristic feature of OCP we deal with in this article is the fact that
the density of parts for each processor is restricted by nonlinear pointwise con-
straints in L2-spaces. In fact, the ordering cone of positive elements in L2-spaces
is typically nonsolid, i.e. it has an empty topological interior. Following Lagrange
multiplier rule, which gives a necessary optimality condition for local solutions to
state constrained OCPs, the constraint qualifications such as the Slater condition
or the Robinson condition should be applied in this case. However, these conditions
cannot be verified for cones such as L2

+(Ω) due to int
(
L2

+(Ω)
)

= ∅. Therefore,
our main intention in this article is to propose a suitable relaxation of the point-
wise state constraints in the form of some inequality conditions involving a so-called
Henig approximation

(
L2

+(Ω)
)
ε

(B) of the ordering cone of positive elements L2
+(Ω).

Here, B is a fixed closed base of L2
+(Ω). Due to fact that L2

+(Ω) ⊂
(
L2

+(Ω)
)
ε

(B)

for all ε > 0, we can replace the cone L2
+(Ω) by its approximation

(
L2

+(Ω)
)
ε

(B). As
a result, it leads to some relaxation of the inequality constraints of the considered
problem, and, hence, to an approximation of the set of admissible pairs to OCP.
The main issue is to show that admissibility and solvability of a given class of OCPs
can be characterized by solving the corresponding Henig relaxed problems in the
limit ε→ 0+.

As for the class of admissible controls, we consider it as inflows with uniform
bounded variation. Such choice is motivated both by theoretical needs of having
good properties of solutions and practical one for the presence of possible costs for
adjusting the supply chain inflow. As was shown in [11], the supply chain dynamics
is well defined for every control with bounded variation.

The outline of the paper is the following. In Section 2 we report some prelimi-
naries and notation we need in the sequel. In Sections 3 we discuss the GHK model
of supply chains in the spirit of [15] and describe the main assumptions on the ini-
tial data and control functions. The precise statement of the corresponding optimal
control problem for supply chains is formulated in Section 4. The aim of Section 5 is
to give a precise definition of the set of admissible solutions. Since the supply chain
model is a coupled control system of partial and ordinary differential equations with
initial and boundary conditions, the solutions of such system may develop disconti-
nuities (after a finite time). In view of this we give the most important properties
of entropy solutions to such systems and specify the sets of admissible states for the
densities of parts at the boundary points. In Section 6 we provide results concern-
ing solvability of the original problem with control and state constraints. We show
that this problem admits at least one solution if and only if this problem is regular.
Section 7 contains the main result of this article, where we show that the pointwise
state constraints can be replaced by the weakened conditions coming from Henig
relaxation of ordering cones. As a result, we give the precise definition of relaxed
optimization problems and show that the solvability and regularity of the original
OCP can be characterized by associated relaxed problems. In particular, we prove
that the optimal solution to the original problem can be attained in the limit by
the optimal solution of the relaxed problem.
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2. Notation and preliminaries. Let N ∈ N be a fixed positive integer and let

{Ij := (aj , bj) ⊂ R}Nj=1 be a given collection of bounded open intervals such that

bj−1 = aj for all j = 2, . . . , N . For each j = 1, . . . , N and for a given T > 0,

we set I = [aj , bj ], ΩT = (0, T ) × R, and Ωj = (0, T ) × Ij . Let Lploc(ΩT ), with
1 ≤ p ≤ ∞, be the locally convex space of all measurable functions g : ΩT → R
such that g|(0,T )×K ∈ Lp((0, T ) × K) for all compact sets K ⊂ R. Hereinafter,

Lp+(Ωj) denotes the natural ordering cone of positive elements in Lp(Ωj), i.e.

Lp+(Ωj) =
{
f ∈ Lp(Ωj)

∣∣ f ≥ 0 almost everywhere in Ωj
}
.

Let I be a bounded open interval in R. By BV (I) we denote the space of all
functions in L1(I) with bounded variation. Under the norm ‖f‖BV (I) = ‖f‖L1(I) +
TV (f), BV (I) is a Banach space, where

TV (f) :=

∫
I

|Df | = sup
{∫

I

f ϕ′ dx : ϕ ∈ C1
0 (I), |ϕ(x)| ≤ 1 for x ∈ I

}
.

It is well-known the following compactness result for BV -spaces (Helly’s selection
theorem, see [2, 14]):

Theorem 2.1. The uniformly bounded sets in BV -norm are relatively compact in
L1(I), that is, if {fk}∞k=1 ⊂ BV (I) and supk∈N ‖fk‖BV (I) < +∞, then there exists

a subsequence of {fk}∞k=1 strongly converging in L1(I) to some f ∈ BV (I) such that

Dfk
∗
⇀ Df weakly-∗ in the space of Radon measures M(I), i.e.

lim
k→∞

∫
I

ϕDfk =

∫
I

ϕDf, ∀ϕ ∈ C0(I).

For an arbitrary function g ∈ L∞(0, T ;BV (Ij)) we say that g(t, aj) and g(t, bj)
are its traces at the points x = aj and x = bj respectively, if the following relations

g(t, aj) = − lim
δ→0+

∫ aj+δ

aj

g(t, x)χ′δ(x− aj) dx, (1)

g(t, bj) = lim
δ→0+

∫ bj

bj−δ
g(t, x)χ′δ(x− bj) dx (2)

hold true for almost all t ∈ (0, T ) and for any test function χδ ∈ C2
0 (−δ, δ) such

that

0 ≤ χδ(x) ≤ 1, χδ(0) = 1, |χ′δ(x)| ≤ Cδ−1, ∀x ∈ (−δ, δ)
with a constant C > 0 independent of δ (see [2, 25]).

3. GHK model of supply chains. In this section we focus on the model intro-
duced in [15] by Göttlich, Herty and Klar, where supply chains are concatenations
of suppliers which process parts. Further, each supplier is composed of a processor
for assembling and construction and a buffer for unprocessed parts, called queue.
Formally we adopt the following definition.

Definition 3.1. We say that a graph G = (V,J ) with a finite set of arcs J =
{J1, J2, . . . , JN} and vertices V = {q2, q3, . . . , qN} is the formal representation of a
supply chain if each arc Jj ∈ J can be associated with a processor and vertices
qj represent the corresponding queues in front of the corresponding processor Jj ,
except the first. Moreover, each arc Jj is parametrized by a bounded closed interval

Ij = [aj , bj ] with bj−1 = aj for all j = 2, ..., N .
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Thus, we consider the type of supply chains when each vertex is connected to
exactly one incoming supplier and one outgoing supplier.

Let µ = [µ1, µ2, . . . , µN ]t ∈ RN+ be a given vector, where µj > 0 stands for the
maximal processing rate of the corresponding processor. Let ζmax(·) = [ζmax1 (·),
ζmax2 (·), . . . , ζmaxN (·)]t ∈

∏N
j=1 L

2
+(Ωj) be a given vector-valued function. We also

assume that each of processors is characterized by a length Lj = bj − aj > 0 and
processing time Tj > 0. The quantity Vj = Lj/Tj is thus the processing velocity.
As a result, having assumed that the dynamics of parts inside the processor Jj is
given by a conservation law for the density of parts, ρj(t, x), with flux given by the
minimum between the physical flow and the maximal processing capacity, we arrive
at the following state constrained initial-boundary value problem (see [11, 15])

∂tρj (t, x) + ∂x min {µj , Vjρj (t, x)} = 0 in Ωj := (0, T )× (aj , bj), (3)

ρj (0, x) = ρj,0 (x) on Ij = (aj , bj), (4)

ρj (t, aj) =
f incj (t)

Vj
for a.a. t ∈ (0, T ), (5)

0 ≤ ρj(t, x) and Bj(ρj)(t, x) ≤ ζmaxj (t, x) a.e. in Ωj . (6)

Here, Bj : L∞(0, T ;BV (Ij)) → L2(Ωj) is a bounded compact operator (i.e. image
of any bounded set in L∞(0, T ;BV (Ij)) under Bj is relatively compact in L2(Ωj)),
ρj(t, x) is the unknown function, representing the density of parts, while the initial
datum ρj,0 ∈ L∞+ (Ij) and the inflow f incj ∈ L∞+ (0, T ) are given functions. It is worth

to emphasize that we consider the inflow for the first arc f inc1 as a control function
f inc1 = u(t) subjected to the constraints

u ∈ U∂ =

{
v ∈ BV (0, T )

∣∣∣∣∣ 0 ≤ u(t) ≤ µ1 for a.a. t ∈ (0, T ),

TV (u) ≤ Ĉ,

}
(7)

where Ĉ > 0 is a given constant.
As follows from relations 3–6, the GHK model for the j-th processor has the

following interpretation: the supplier has to process as many parts as possible. If
the outgoing buffer is empty, then it processes all incoming parts but at most µj ,
otherwise it can always process at rate µj .

As for the dynamics of the queues, we assume that each queue buffer occupancy
can be described as a time-dependent function t→ qj(t) for j = 2, . . . , N , satisfying
the following Cauchy problem for ordinary differential equation

d qj(t)

dt
= fj−1 (ρj−1 (t, bj−1))− f incj (t) in (0, T ), (8)

qj(0) = qj,0. (9)

Here, q0 = [q2,0, q3,0, . . . , qN,0]t ∈ RN+ is a given positive vector, and functions

f incj ∈ L∞+ (0, T ) and fj−1 ∈ L∞+ (R+) are defined for j = 2, . . . , N as follows

f incj (t) =

{
min {fj−1 (ρj−1 (t, bj−1)) , µj} if qj (t) = 0,
µj if qj (t) > 0,

(10)

fj−1(ρ) = min {µj−1, Vj−1ρ} , ∀ ρ ≥ 0. (11)
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Finally, the supply chain model is a coupled control system of partial and ordinary
differential equations with initial and boundary conditions given by

∂tρj (t, x) + ∂x min {µj , Vjρj (t, x)} = 0 in Ωj , j = 1, ..., N,
d qj(t)
dt = fj−1 (ρj−1 (t, bj−1))− f incj (t) in (0, T ), j = 2, ..., N,

ρj (0, x) = ρj,0 (x) on Ij , j = 1, ..., N,

ρj (t, aj) =
finc
j (t)

Vj
for a.a. t ∈ (0, T ), j = 1, ..., N,

qj (0) = qj,0 j = 2, ..., N,
f inc1 (t) = u(t)

(12)
where f incj (t) and fj−1(ρ) are given by 10–11 for j = 2, ..., N .

4. Statement of optimal control problem. In this subsection we introduce an
optimal control problem for the model 12 with control and state constraints 6–7. Let
β ∈ L1

+(0, T ) and ψ, α2, α3, . . . , αN ∈ L∞+ (0, T ) be given positive weight functions.
We define the cost functional as follows

J(u, ρ, q) =

N∑
j=2

∫ T

0

αj(t)qj(t) dt+

∫ T

0

β(t)
∣∣∣VNρN (t, bN )− ψ(t)

∣∣∣ dt, (13)

where the term VNρN (·, bN ) represents the outflow of the supply chain. The main
reason to consider the cost functional in the form 13 is to minimize the queues
q(t) = [q2(t), q3(t), . . . , qN (t)]t in front of processors and the distance between the
effective outflow VNρN (t, bN ) and the pre-assigned one ψ(t), using the supply chain
input u ∈ U∂ as a control. We consider the distance in the second term of 13
instead of the quadratic distance of the outflow from the pre-assigned function ψ
because the cost functional should be well defined for each admissible u ∈ U∂ ,
qj ∈ W 1,1(0, T ), and ρN ∈

(
C0,1([0, T ];L1(Ij)) ∩ L∞(0, T ;BV (Ij))

)
, where the

given choice of functional spaces is a consequence of the existence result for the
coupled control system 12 (see [6, 11]).

Thus, our main goal is to analyze the following minimization problem: for given

Ĉ > 0,

q0 = [q2,0, q3,0, . . . , qN,0]t ∈ RN−1
+ ,

µ = [µ1, µ2, . . . , µN ]t ∈ RN+ ,{
Bj : L∞(0, T ;BV (Ij))→ L2(Ωj)

}N
j=1

are bounded and compact,

V = [V1, V2, . . . , VN ]t ∈ RN+ ,

ρ0(·) = [ρ1,0(·), ρ2,0(·), . . . , ρN,0(·)]t ∈
N∏
j=1

L∞+ (Ij), and

ζmax(·) = [ζmax1 (·), ζmax2 (·), . . . , ζmaxN (·)]t ∈
N∏
j=1

L2
+(Ωj), (14)

minimize J(u, ρ, q) subject to constraints 6–7 and 12. (15)

To start we need to make sure that minimization problem 15 is regular, i.e. the
dynamics of supply chain 12 with control and state constraints 6–7 is well defined
for every admissible control u ∈ U∂ . It is well known that even for arbitrary smooth
functions u(t) and ρj,0(x), the initial-boundary value problem 3–6 is not well-posed.
Indeed it can admit non-unique solutions and moreover, these solutions may develop
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discontinuous after a finite time (see [4, 6, 24]), which makes it necessary to consider
the concept of weak solutions. In the meanwhile, weak solutions of 3–6 are, in
general, not unique and, in order to select the “physically” relevant solution, some
additional conditions and special formulation of Dirichlet boundary conditions must
be imposed.

On the other hand, because of the state constraints 6 the regularity of the OCP
15 is an open question even for the simplest situation. So, the first question to be
answered for this problem is about admissibility: does there exist at least one triple
(u, ρ, q) such that u ∈ U∂ , 0 ≤ ρ, B(ρ) ≤ ζmax, and (ρ, q) would be a physically
relevant solution to 12? In fact, one needs the set of admissible solutions to be
sufficiently rich in some sense, otherwise the OCP 15 becomes trivial. However, from
a mathematical point of view, to deal directly with all constraints above presented
is typically very difficult and, except for some special cases, this question is largely
open [7, 21, 22]. Nevertheless, in many applications it is an important task to find an
admissible (or at least an approximately admissible, in a sense to be made precise)
solution when both control and state constraints for the OCP are given. Thus,
if the set of admissible solutions is rather “thin” , it is reasonable to weaken the
requirements on admissible solutions to the original OCP. In particular, it would
be reasonable to assume that the optimality property for the solutions (u, y(u))
holds not strictly but rather with some (possibly high) accuracy. In this sense, an
extremal problem may have an approximate or suboptimal solution even if it is not
solvable.

5. On admissible solutions to coupled control system (12). Following [4,
13], we use the entropy-admissibility conditions, coming from physical considera-
tions.

Definition 5.1. A couple of functions (ηj , νj) : R+ → R2 for a given j = 1, . . . , N
is an entropy-flux for the equation 3, if ηj : R+ → R is convex and they are related
by the equality

Dηj(v) ·Dfj(ρ) = Dνj(ρ) for a.a. ρ ∈ R+, (16)

where fj(ρ) := min {µj , Vjρ}.

We note that such definition makes sense because any convex function η de-
fined on an open set is locally Lipschitz, and therefore Dηj and Dfj are defined
almost everywhere. As an example of the entropy-flux pair, it can be considered
the following one

ηj(ρ) := |ρ− k|, νj(ρ) := (fj(ρ)− fj(k)) sign (ρ− k), ∀ k ∈ R.
Further, by analogy with Dubois and Lefloch [13], we specify the sets of admis-

sible states at the boundary points {x = aj}Nj=1.

Definition 5.2. For a given j = 1, . . . , N and given boundary value
finc
j (t)

Vj
, the

set Ej
(
finc
j (t)

Vj

)
of admissible values of the function ρj(t, x) at the boundary point

x = aj is defined as all the states v(t) in R+ such that

νj
(
v(t)

)
− νj(

f incj (t)

Vj
)−Dηj(

f incj (t)

Vj
)
(
fj
(
v(t)

)
− fj(

f incj (t)

Vj
)
)
≤ 0 (17)

for each pair (ηj , νj) of entropy-flux.



508 CIRO D’APICE, PETER I. KOGUT AND ROSANNA MANZO

As a result, the boundary conditions for the problem 3–6 can be reformulated as
follows

ρj (t, aj) ∈ Ej
(f incj (t)

Vj

)
, for a.a. t ∈ (0, T ) and all j = 1, ..., N. (18)

Note that the function
finc
j (t)

Vj
itself belongs to Ej(

finc
j (t)

Vj
). But generally the set

Ej(
finc
j (t)

Vj
) is not reduced to this point, and, therefore, conditions 18 should be

considered as extensions of the usual Dirichlet boundary conditions 6.
In view of this, we adopt the following definition of entropy solutions to the

initial-boundary value problem 3–6.

Definition 5.3. For given j = 1, . . . , N , ρj,0 ∈ L∞+ (Ij), and f incj ∈ L∞+ (0, T ),
function ρj(t, x) is called an entropy solution of 3–6 if for each entropy-flux pair
(ηj , νj) the entropy inequality

Dtηj(ρj) +Dxνj(ρj) ≤ 0 in D′(Ωj) (19)

holds true (in the sense of distributions), the boundary condition 6 is valid in the
sense of inclusion 18, and fulfilment of the initial condition 5 is assumed as follows

lim
t→0+

∫ b

a

|ρj(t, x)− ρj,0(x)| dx = 0, ∀ (a, b) ∈ Ij . (20)

As for the dynamics of queues, it is easy to see that the right-hand side of
equation 8 is a discontinuous function with respect to qj . Hence, having rewritten
8 in the form of the corresponding differential inclusion, it is plausible to define a
weak solution to 8–9 in the interpretation of Filippov (for the details we refer to
[6, 11]).

The existence and uniqueness of entropy solution for the coupled control sys-
tem 12 under assumptions given above was established in [6] by the front tracking
method (see also [11, 19]). The following result collects the most important prop-
erties of entropy solutions to the system 12.

Theorem 5.4 ([6, 11]). Let

Ĉ > 0, q0 ∈ RN−1
+ , µ, V ∈ RN+ , and ρ0 ∈

N∏
j=1

L∞+ (Ij) ∩BV (Ij)

be given data. Then for every admissible control u ∈ U∂ there exists a unique pair
of vector-valued function

ρ(t, x) = [ρ1(t, x), ρ2(t, x), . . . , ρN (t, x)]t, q(t) = [q2(t), q3(t), . . . , qN (t)]t

such that

1. (ρ, q) ∈
∏N
j=1

(
C0,1([0, T ];L1(Ij)) ∩ L∞(0, T ;BV (Ij))

)
×
∏N
j=2W

1,1(0, T );

2. for each j = 1, . . . , N , ρj(t, x) is the entropy solution to the corresponding
initial-boundary value problem 3–6 in the sense of Definition 5.3;

3. for each j = 2, . . . , N , qj(t, x) is a Filippov weak solution to the Cauchy prob-
lem 8–9 such that the relations

q̇j(t) = fj−1 (ρj−1 (t, bj−1))− f incj (t), j = 2, . . . , N,

are valid for almost all t ∈ (0, T );
4. qj(t) ≥ 0 for all t ∈ [0, T ] and j = 2, . . . , N ;
5. ρj(t, x) ≥ 0 for almost all (t, x) ∈ Ωj = (0, T )× Ij and j = 1, . . . , N ;
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6. there exists a constant C = C(T ) > 0 such that

N∑
j=1

ess sup
t∈(0,T )

‖ρj(t, ·)‖BV (Ij) ≤ C
( N∑
j=1

‖ρj,0‖BV (Ij) + ‖u‖BV (0,T ) + ‖q0‖RN−1

)
; (21)

N∑
j=2

‖qj‖W 1,1(0,T ) ≤ C
( N∑
j=1

‖ρj,0‖BV (Ij) + ‖u‖BV (0,T ) + ‖q0‖RN−1

)
. (22)

Moreover, if u, ũ ∈ U∂ are arbitrary controls and (ρ, q) and (ρ̃, q̃) are the corre-
sponding solutions to 12, then the following estimate holds true

N∑
j=1

max
t∈[0,T ]

‖ρj(t, ·)− ρ̃j(t, ·)‖L1(Ij) +

N∑
j=2

‖qj − q̃j‖C([0,T ]) ≤
1

V1
‖u− ũ‖L1(0,T ). (23)

Remark 1. As immediately follows from Theorem 5.4 and Theorem 10.2.1 in [2],
for every j = 1, . . . , N there exist linear continuous trace operators

γaj : L∞(0, T ;BV (Ij))→ L∞(0, T ) and γbj : L∞(0, T ;BV (Ij))→ L∞(0, T )

such that

γaj (ρ) = ρ
∣∣
x=aj

and γbj (ρ) = ρ
∣∣
x=bj

for all ρ ∈ L∞(0, T ;BV (Ij) ∩ C(Ij)).

Moreover, in this case the following generalized Green’s formulae∫ T

0

α(t)γbj (ρ(t, ·)) dt =

∫ T

0

[ ∫
Ij

ϕDρ+

∫ bj

aj

ϕ′(x)ρ(t, x) dx
]
dt, (24)∫ T

0

α(t)γaj (ρ(t, ·)) dt =

∫ T

0

[ ∫
Ij

ψDρ+

∫ bj

aj

ψ′(x)ρ(t, x) dx
]
dt (25)

hold true for every ρ ∈ L∞(0, T ;BV (Ij)), α ∈ L1(0, T ), and ϕ,ψ ∈ C1(Ij) such
that

ϕ(aj) = 0, ϕ(bj) = 1, ψ(aj) = −1, ψ(bj) = 0.

Following the definition of the trace operators γaj and γbj , it is easy to see that the
equalities

γaj (ρj(t, x)) = ρj (t, aj) , γbj (ρj(t, x)) = ρj (t, bj) , ∀ j = 1, . . . , N,

where functions ρj (t, aj) and ρj (t, bj) are defined by 1–2, hold true for any entropy
solution ρ(t, x) = [ρ1(t, x), ρ2(t, x), . . . , ρN (t, x)]t of 12.

Taking into account the fact that conditions ρj ∈ L2
+(Ωj) and ζmaxj − Bj(ρj) ∈

L2
+(Ωj) are equivalent to the state constraints 0 ≤ ρj and Bj(ρj) ≤ ζmaxj a.e. in

Ωj , we specify the following set

Υ∂ =

ρ = [ρ1, . . . , ρN ]t

∣∣∣∣∣∣∣
ρj ∈ L∞(0, T ;BV (Ij)),

ρj ∈ L2
+(Ωj), ζmaxj − Bj(ρj) ∈ L2

+(Ωj),

j = 1, 2, . . . , N.

 (26)

Definition 5.5. We say that a triplet

(u, ρ, q) ∈ BV (0, T )×
N∏
j=1

C
(
[0, T ];L1(Ij))

)
×

N∏
j=2

W 1,1(0, T )

is an admissible solution to the OCP 15 if u ∈ U∂ , ρ ∈ Υ∂ , J(u, ρ, q) < +∞, and
pair (ρ, q) = (ρ(u), q(u)) is an entropy solution to 12 in the sense of Definition 5.3.
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Let Ξ be the set of all admissible triplets to the problem 15. We say that a triplet
(u0, ρ0, q0) is optimal for the problem 15 if

(u0, ρ0, q0) ∈ Ξ and J(u0, ρ0, q0) = inf
(u,ρ,q)∈Ξ

J(u, ρ, q).

6. Existence of optimal solutions. Since Theorem 5.4 does not ensure the ex-
istence of admissible controls u ∈ U∂ such that the corresponding entropy solutions
(ρ, q) of 12 would satisfy the state constraints ζmaxj − Bj(ρj) ∈ L2

+(Ωj) for all
j = 1, . . . , N , the following assumption is crucial for our further analysis:

(A1): The OCP 15 is regular in the following sense: for a given vector-valued

function ζmax(·) = [ζmax1 (·), ζmax2 (·), . . . , ζmaxN (·)]t ∈
∏N
j=1 L

2
+(Ωj) and a

given collection of bounded compact operators
{
Bj : L∞(0, T ;BV (Ij)) →

L2(Ωj)
}N
j=1

there exists at least one triplet (u, ρ, q) such that (u, ρ, q) ∈ Ξ.

Then the sufficient conditions for the existence of an optimal solution to the
problem 15 can be stated as follows.

Theorem 6.1. Let

Ĉ > 0, q0 ∈ RN−1
+ , µ, V ∈ RN+ , ρ0 ∈

N∏
j=1

L∞+ (Ij) ∩BV (Ij), (27)

ζmax(·) = [ζmax1 (·), ζmax2 (·), . . . , ζmaxN (·)]t ∈
N∏
j=1

L2
+(Ωj), (28)

β, α2, α3, . . . , αN ∈ L1
+(0, T ), and ψ ∈ L∞+ (0, T ) (29)

be an arbitrary given initial data. Let
{
Bj : L∞(0, T ;BV (Ij))→ L2(Ωj)

}N
j=1

be an

arbitrary family of bounded compact operators. Then the OCP 15 admits an optimal
solution (u0, y0) ∈ Ξ if and only if Hypothesis (A1) is satisfied.

Proof. Hypothesis (A1) and Theorem 5.4 (see items 4 and 5) imply that Ξ 6= ∅ and
the cost functional J(u, ρ, q) is bounded below on the set Ξ, namely, J(u, ρ, q) ≥ 0
for all admissible triplets (u, ρ, q) ∈ Ξ.

Let
{

(uk, ρk, qk)
}
k∈N ⊂ Ξ be a minimizing sequence for the original problem, i.e.

lim
k→∞

J(uk, ρk, qk) = inf
(u,ρ,q)∈Ξ

J(u, ρ, q) ≥ 0.

It is well known that the set of all step functions on (0, T ) is dense in L1(0, T ).
Hence, without loss of generality, we may assume that

{
uk
}
k∈N is a sequence of

piecewise constant controls. Since the sequence
{
uk
}
k∈N ⊂ U∂ is uniformly bounded

in BV -norm, it follows from a priory estimates 21–22 and Theorem 2.1 that there
exists a triplet

(u∗, ρ∗, q∗) ∈ U∂ ×
N∏
j=1

L∞(0, T ;BV (Ij))×
N∏
j=2

W 1,1(0, T )

such that, within a subsequence, we have (see [2, 6])

uk → u∗ in L1(0, T ), (30)

Duk
∗
⇀ Du∗ in M(0, T ), (31)

qkj ⇀ q∗j in W 1,1(0, T ), ∀ j = 2, . . . , N, (32)
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qkj → q∗j in L1(0, T ), ∀ j = 2, . . . , N, (33)

ρkj (t, x)→ ρj(t, x) a.e. in Ωj , ∀ j = 1, . . . , N, (34)

lim
k→∞

∫ T

0

φ(t)

∫
Ij

|ρkj (t, x)− ρ∗j (t, x)| dx dt = 0, ∀φ ∈ L1(0, T ), ∀ j = 1, N, (35)

where 35 is a direct consequence of the BV -compactness criterion and Banach-
Alaoglu Theorem.

Let us show that (u∗, ρ∗, q∗) ∈ Ξ. Let {(ηj , νj)}Nj=1 be an arbitrary collection of

entropy-flux pairs related to the system 12. Since (uk, ρk, qk) ∈ Ξ, it follows that
for every k ∈ N the following relations hold true∫ T

0

∫
Ij

[
ηj(ρ

k
j (t, x))φt + νj(ρ

k
j (t, x))φx

]
dx dt ≥ 0, ∀φ ∈ C∞0 (Ωj), j = 1, N, (36)

lim
t→0+

∫ b

a

|ρkj (t, x)− ρj,0(x)| dx = 0, ∀ (a, b) ∈ Ij , j = 1, N, (37)

νj
(
ρkj (t, aj)

)
− νj

(
gkj (t)

)
−Dηj

(
gkj (t)

) (
fj
(
ρkj (t, aj)

)
− fj

(
gkj (t)

))
≤ 0 a.e. in (0, T ), j = 1, N, (38)

0 ≤ ρkj (t, x) a.e. in Ωj , j = 1, N, (39)

Bj
(
ρkj
)

(t, x) ≤ ζmaxj (t, x) a.e. in Ωj , j = 1, N, (40)

qkj (0) = qj,0, j = 2, N, (41)∫ T

0

[
− q̇kj (t) + fj−1

(
ρkj−1 (t, bj−1)

)
− Vjgkj (t)

]
φ(t) dt = 0,

∀φ ∈ C∞0 (R), j = 2, N,

(42)

where

gkj (t) =
1

Vj

{
min

{
fj−1

(
ρkj−1 (t, bj−1)

)
, µj
}

if qkj (t) = 0,
µj if qkj (t) > 0.

(43)

These relations are the direct consequence of Definition 5.3 and the fact that func-
tions qkj ∈ W 1,1(0, T ) are the solutions of the Cauchy problems 8-9 in the sense of
Caratheodory (see item 3 of Theorem 5.4).

Thus, in order to prove the inclusion (u∗, ρ∗, q∗) ∈ Ξ it is enough to pass to the
limit in 36–42 as k → ∞ and show that the limit triplet (u∗, ρ∗, q∗) satisfies the
same relations. Since the operators Bj : L∞(0, T ;BV (Ij)) → L2(Ωj) are compact
and the sequence

{
ρkj
}
k∈N is bounded in L∞(0, T ;BV (Ij)), it follows from 35 that

Bj
(
ρkj
)
→ Bj

(
ρ∗j
)

strongly in L2(Ωj).

So, we may assume that, up to a subsequence, we have the pointwise convergence
of Bj

(
ρkj
)

(t, x) to Bj
(
ρ∗j
)

(t, x) almost everywhere in Ωj for every j = 1, . . . , N .
Hence, taking this observation and properties 34–35 into account, we can pass to
the limit in relations 36, 37, 39, and 40. As a result, we obtain∫ T

0

∫
Ij

[
ηj(ρ

∗
j (t, x))φt + νj(ρ

∗
j (t, x))φx

]
dx dt ≥ 0,

∀φ ∈ C∞0 (Ωj), j = 1, N,

(44)
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lim
t→0+

∫ b

a

|ρ∗j (t, x)− ρj,0(x)| dx = 0, ∀ (a, b) ∈ Ij , j = 1, N, (45)

0 ≤ ρ∗j (t, x) a.e. in Ωj , j = 1, N, (46)

Bj
(
ρ∗j
)

(t, x) ≤ ζmaxj (t, x) a.e. in Ωj , j = 1, N. (47)

In order to guarantee the fulfilment of boundary conditions for the limit functions
ρ∗j , we apply the following trick coming from Green’s formula for BV -functions

lim
k→∞

min
{
fj−1

(
ρkj−1 (t, bj−1)

)
, µj
}

by 24
= min

{
fj−1

(
lim
k→∞

(∫
Ij−1

ϕDρkj−1 +

∫ bj−1

aj−1

ϕ′(x)ρkj−1(t, x) dx
))
, µj

}
by 35

= min
{
fj−1

((∫
Ij−1

ϕDρ∗j−1 +

∫ bj−1

aj−1

ϕ′(x)ρ∗j−1(t, x) dx
))
, µj

}
by 24

= min
{
fj−1

(
ρ∗j−1

(
t, bj−1

))
, µj

}
for a.a. t ∈ (0, T ),

(48)

where ϕ ∈ C1(Ij) is an arbitrary function with ϕ(aj−1) = 0 and ϕ(bj−1) = 1.
In the meantime, in view of the continuous embedding W 1,1(0, T ) ↪→ C([0,

T ]), the convergence properties 32–33 imply that q∗ ∈ C([0, T ]). Moreover, since{
uk
}
k∈N is a sequence of piecewise constant controls, the Front-Tracking proce-

dure ensures the uniform convergence qkj → q∗j on [0, T ]. Hence, in view of 48, we
immediately arrive at the following equality

g∗j (t) := lim
k→∞

gkj (t) =
1

Vj

{
min

{
fj−1

(
ρ∗j−1 (t, bj−1)

)
, µj
}

if q∗j (t) = 0,
µj if q∗j (t) > 0,

(49)

which should be interpreted in the sense of almost everywhere in (0, T ). Taking
this fact into account, we can pass to the limit in relations 41–42 as k → ∞. As a
result, for each j = 2, . . . , N , we get

q∗j (0) = qj,0, (50)∫ T

0

[
−q̇∗j (t) + fj−1

(
ρ∗j−1 (t, bj−1)

)
− Vjg∗j (t)

]
φ(t) dt = 0, ∀φ ∈ C∞0 (R). (51)

It remains to pass to the limit in the entropy inequality 38 which is a weak
formulation of the boundary conditions. To this end, we can apply the same trick
as we did it in 48. As a result, by analogy with 48, it can be shown that

lim
k→∞

fj
(
ρkj (t, aj)

)
= fj

(
ρ∗j (t, aj)

)
,

and, therefore, the limit passage in 38 leads us to the relation

νj
(
ρ∗j (t, aj)

)
− νj

(
g∗j (t)

)
−Dηj

(
g∗j (t)

) (
fj
(
ρ∗j (t, aj)

)
− fj

(
g∗j (t)

))
≤ 0 a.e. in (0, T ), j = 1, N.

(52)

Thus, summing up the relations 44–52 with condition u∗ ∈ U∂ , we finally con-
clude: the pair (ρ∗, q∗) is an entropy solution to the system 12 for u = u∗ and,
hence, by Theorem 5.4,

(u∗, ρ∗, q∗) ∈ U∂ ×
N∏
j=1

(
C0,1([0, T ];L1(Ij)) ∩ L∞(0, T ;BV (Ij))

)
×

N∏
j=2

W 1,1(0, T ).

Thus, the limit triple (u∗, ρ∗, q∗) is an admissible solution to the OCP 15.
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To conclude the proof, it remains to show the lower semicontinuity property for
the cost functional, i.e.

lim inf
k→∞

J(uk, ρk, qk) ≥ J(u∗, ρ∗, q∗).

To this end, we make use of the following chain of transformations. Let ϕ ∈ C1(IN )
be an arbitrary test function on IN = [aN , bN ] such that ϕ(aN ) = 0 and ϕ(bN ) = 1.
Then, using generalized Green’s formula 24 and convergence property 35, we get

inf
(u,ρ,q)∈Ξ

J(u, ρ, q) = lim
k→∞

J(uk, ρk, qk)

= lim
k→∞

N∑
j=2

∫ T

0

αj(t)q
k
j (t) dt+ lim

k→∞

∫ T

0

β(t)
∣∣∣VNρkN (t, bN )− ψ(t)

∣∣∣ dt
by 33

=

N∑
j=2

∫ T

0

αj(t)q
∗
j (t) dt+ lim

k→∞

∫ T

0

β(t)
∣∣∣VNρkN (t, bN )− ψ(t)

∣∣∣ dt
by 24

= lim
k→∞

∫ T

0

∣∣∣β(t)VN

∫
IN

ϕDρkN + VNβ(t)

∫ bN

aN

ϕ′(x)ρkN (t, x) dx− β(t)ψ(t)
∣∣∣ dt

+

N∑
j=2

∫ T

0

αj(t)q
∗
j (t) dt

by 34–35
=

N∑
j=2

∫ T

0

αj(t)q
∗
j (t) dt

+

∫ T

0

∣∣∣β(t)VN

∫
IN

ϕDρ∗N + VNβ(t)

∫ bN

aN

ϕ′(x)ρ∗N (t, x) dx− β(t)ψ(t)
∣∣∣ dt

by 24
=

N∑
j=2

∫ T

0

αj(t)q
∗
j (t) dt+

∫ T

0

β(t)
∣∣∣VNρ∗N (t, bN )− ψ(t)

∣∣∣ dt = J(u∗, ρ∗, q∗). (53)

Thus, (u∗, ρ∗, q∗) is an optimal solution for the problem 15.

7. Henig relaxation of state-constrainted OCP 15. As follows from Theorem
6.1, the existence of optimal solutions to the problem 15 can be obtained by using
compactness arguments and the regularity assumption (A1). However, because of
the state constraints ρ ∈ Υ∂ the regularity of the OCP 15 (see (A1)) is an open
question even for the simplest situation. As was mentioned above, the pointwise
inequality constraints

Bj(ρj)(t, x) ≤ ζmaxj (t, x) a.e. in Ωj , ∀ j = 1, . . . , N

can be equivalently rewritten as ζmaxj − Bj(ρj) ∈ L2
+(Ωj) for all j = 1, . . . , N ,

where L2
+(Ωj) stands for the natural ordering cone of positive elements in L2(Ωj).

From practical point of view it means that we cannot apply to the OCP 15 any
constraint qualifications like the Slater condition or the Robinson condition because
each of those approaches is essentially based on non-emptiness of the interiors of
the ordering cones L2

+(Ωj). However, in our case we have int (L2
+(Ωj)) = ∅ for all

j = 1, . . . , N . Therefore, the main goal of this section is to provide a regularization
of the pointwise state constraints by replacing the ordering cones Λj := L2

+(Ωj) by

their solid Henig approximations (Λj)ε(Dj) (see [27]) and show that admissibility
and solvability of OCP 15 can be characterized by solving the corresponding Henig
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relaxed problems in the limit ε→ 0. Here,

Dj :=
{
ξ ∈ L2

+(Ωj)
∣∣∣ ∫ T

0

∫ bj

aj

ξ(t, x) dx dt = 1
}

is a closed base of Λj , (54)

for all j = 1, . . . , N .
For given j = 1, . . . , N , base Dj , and ε > 0, we adopt the following concept.

Definition 7.1 ([27]). We say that (Λj)ε(Dj) is the Henig dilating cone if for every
j = 1, . . . , N it is defined as follows

(Λj)ε(Dj) := cl (cone (Dj +Bε(0))) := cl ({λξ : λ ≥ 0, ξ ∈ Dj +Bε(0)}) ,
where 1

εBε(0) :=
{
ξ ∈ L2(Ωj) : ‖ξ‖L2(Ωj) ≤ 1

}
is the closed unit ball in L2(Ωj).

As follows from this definition, int (Λj)ε(Dj) 6= ∅ for every ε > 0, i.e. Henig
dilating cones are proper solid. Moreover, we have the following properties of such
cones (see [26, 27]).

Proposition 1. For a fixed j = 1, . . . , N , let Dj be the set defined by 54. Then
choosing ε ∈ (0, δ), where δ := inf

{
‖ξ‖L2(Ωj) : ξ ∈ Dj

}
, the following statements

hold true:

(i) (Λj)ε(Dj) is a pointed cone, i.e. (Λj)ε(Dj) ∩
(
−(Λj)ε(Dj)

)
= {0};

(ii) (Λj)ε(Dj) ⊂ (Λj)ε+γ(Dj) for all γ > 0;
(iii) (Λj)ε(Dj) = cone

(
clL2

+(Ωj)
)
;

(iv) L2
+(Ωj) =

⋂
0<ε<δ(Λ

j)ε(Dj);

(v) L2
+(Ωj) ⊂ {0} ∪ int

(
(Λj)ε(Dj)

)
;

(vi) The sequence of Henig dilating cones
{

(Λj)ε(Dj)
}
ε>0

converges to the cone

of positive elements L2
+(Ωj) in Kuratowski sense with respect to the norm

topology of L2(Ωj) as ε→ 0;
(vii) The implication

ξ ∈ (Λj)ε(Dj) =⇒ ε

κ+ ε
‖ξ‖L2(Ωj) + ξ 6∈ L2

−(Ωj), (55)

i. e. ξ ≮Λj − ε

κ+ ε
‖ξ‖L2(Ωj)

holds true with κ = sup
{
‖ξ‖L2(Ωj) : ξ ∈ Dj

}
.

Taking these results into account, we associate with OCP 15 the following Henig
relaxed problem

inf
(u,ρ,q)∈Ξε

J(u, ρ, q), ∀ ε ∈ (0, δ) (56)

where

δ = min
j=1,...,N

[
inf
{
‖ξ‖L2(Ωj) : ξ ∈ Dj

} ]
, (57)

and we define the set of admissible solutions

Ξε ⊂ BV (0, T )×
N∏
j=1

C
(
[0, T ];L1(Ij))

)
×

N∏
j=2

W 1,1(0, T )

as follows: (u, ρ, q) ∈ Ξε if and only if u ∈ U∂ , J(u, ρ, q) < +∞, the pair (ρ, q) =
(ρ(u), q(u)) is an entropy solution to 12 in the sense of Definition 5.3, and

ρ ∈ Υε
∂ =

{
ρ = [ρ1, . . . , ρN ]t

∣∣∣∣∣ ζmaxj − Bj(ρj) ∈ (Λj)ε(Dj),

ρj ∈ L2
+(Ωj), j = 1, 2, . . . , N.

}
(58)
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Since, by property (v) (see Proposition 1), the inclusion Ξ ⊆ Ξε holds true for
all ε > 0, it is reasonable to call the OCP 56 a relaxation of OCP 15. More-
over, as obviously follows from Proposition 1 (see property (vi)), the convergence

Ξε
ε→0→ Ξ in Kuratowski sense holds true with respect to the topology on BV (0, T )×∏N
j=1 L

∞(0, T ;BV (Ij))×
∏N
j=2W

1,1(0, T ) given by relations 30–35.
We are now in a position to show that using the relaxation approach we can re-

duce the main suppositions of Theorem 6.1. In particular, we characterize Hypoth-
esis (A1) by the regularity properties of the corresponding Henig relaxed problems.

Theorem 7.2. Let {εk}k∈N ⊂ (0, δ) be a monotonically decreasing sequence con-
verging to 0 as k → ∞. Then for given initial data 27–29 and given family of

bounded compact operators
{
Bj : L∞(0, T ;BV (Ij)) → L2(Ωj)

}N
j=1

the Henig re-

laxed problems 56 are regular for all ε = εk, k ∈ N if and only if Hypothesis
(A1) is satisfied. Moreover, for any sequence

{
(uk, ρk, qk)

}
k∈N satisfying condi-

tion (uk, ρk, qk) ∈ Ξεk for all k ∈ N, there is a subsequence
{

(uki , ρki , qki)
}
i∈N of{

(uk, ρk, qk)
}
k∈N such that

(uki , ρki , qki)
i→∞−→ (u, ρ, q) in the sense of 30–35, and (u, ρ, q) ∈ Ξ.

Proof. Since the implication
(
Ξ 6= ∅

)
=⇒

(
Ξε 6= ∅ for all ε > 0

)
is obvious by

Proposition 1 (see property (vi)), we concentrate on the proof of the inverse state-
ment — regularity of the Henig relaxed problems inf(u,ρ,q)∈Ξεk

J(u, ρ, q) for all k ∈ N
implies the existence of at least one triple (u, ρ, q) such that (u, ρ, q) ∈ Ξ.

Let
{

(uk, ρk, qk)
}
k∈N be an arbitrary sequence with property: (uk, ρk, qk) ∈ Ξεk

for all k ∈ N. Since the set U∂ and a priory estimates 21–23 do not depend on
parameter εk, it follows by compactness arguments (see the proof of Theorem 6.1)
that there exist a subsequence of

{
(uk, ρk, qk)

}
k∈N (still denoted by the same index)

and a triplet

(u∗, ρ∗, q∗) ∈ U∂ ×
N∏
j=1

L∞(0, T ;BV (Ij))×
N∏
j=2

W 1,1(0, T )

such that (uk, ρk, qk)
k→∞−→ (u∗, ρ∗, q∗) in the sense of 30–35. Moreover, in view of

the compactness properties of operators Bj : L∞(0, T ;BV (Ij)) → L2(Ωj), we may
suppose that

ξk := ζmaxj − Bj(ρkj )→ ζmaxj − Bj(ρ∗j ) strongly in L2(Ωj), ∀ j = 1, . . . , N. (59)

Closely following the proof of Theorem 6.1, it can be shown that the limit triplet
(u∗, ρ∗, q∗) is such that u∗ ∈ U∂ , J(u∗, ρ∗, q∗) < +∞, and the pair (ρ∗, q∗) =
(ρ∗(u∗), q∗(u∗)) is an entropy solution to 12 in the sense of Definition 5.3. It remains
to prove that ρ∗ ∈ Υ∂ , i.e. we have to establish the inclusions

ζmaxj − Bj(ρ∗j ) ∈ L2
+(Ωj), ∀ j = 1, . . . , N. (60)

By contraposition, let us assume that ξ∗ := ζmaxj − Bj(ρ∗j ) ∈ L2(Ωj) \ L2
+(Ωj) for

some j ∈ {1, . . . , N} (here, we apply the arguments of R. Schiel from [26]). Since
the cone L2

+(Ωj) is closed, it follows that there is a neighborhood N (ξ∗) of ξ∗ in
L2(Ωj) such that N (ξ∗) ∩ L2

+(Ωj) = ∅. Using the fact that

L2
+(Ωj) ⊂ (Λj)εk(Dj) ⊆ (Λj)εl(Dj), ∀ k ≥ l
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and using the property (vi) of Proposition 1, it is easy to conclude from definition
of the Kuratowski limit the existence of an index k0 ∈ N such that

N (ξ∗) ∩ (Λj)εk(Dj) = ∅, ∀ k ≥ k0. (61)

However, in view of the strong convergence property 59, there is an index k1 ∈ N
satisfying

ξk ∈ N (ξ∗), ∀ k ≥ k1. (62)

Combining 61 and 62, we finally obtain

ξk = ζmaxj − Bj(ρkj ) ∈ L2(Ωj) \ (Λj)εk(Dj), ∀ k ≥ max{k0, k1}.

This, however, is a contradiction to

ρkj ∈ Υεk
∂ , ∀ k ∈ N.

Thus, ζmaxj − Bj(ρ∗j ) ∈ L2
+(Ωj), i.e. ρ∗ ∈ Υ∂ , and hence, the triplet (u∗, ρ∗, q∗) is

admissible for the OCP 15.

Next result is crucial in this article. We show that optimal solutions for the orig-
inal OCPs 15 can be attained by solving the corresponding Henig relaxed problems
56.

Theorem 7.3. Assume that the initial data for OCP 15 are given as in Theo-
rem 6.1. Let {εk}k∈N ⊂ (0, δ) be a monotonically decreasing sequence such that

εk → 0 as k →∞, where δ > 0 is defined by 57. Let
{

(uk,0, ρk,0, qk,0) ∈ Ξεk
}
k∈N be

a sequence of optimal solutions to the Henig relaxed problems 56. Then there is a
subsequence

{
(uki,0, ρki,0, qki,0)

}
i∈N of

{
(uk,0, ρk,0, qk,0)

}
k∈N and a triple (u0, ρ0, q0)

such that

(uki,0, ρki,0, qki,0)
i→∞−→ (u0, ρ0, q0) in the sense of 30–35, (63)

(u0, ρ0, q0) ∈ Ξ, and J(u0, ρ0, q0) = inf
(u,ρ,q)∈Ξ

J(u, ρ, q). (64)

Proof. Since the compactness property 63 and the inclusion (u0, ρ0, q0) ∈ Ξ are
a direct consequence of Theorem 7.2, it remains to show that the limit triplet
(u0, ρ0, q0) is a solution to the OCP 15. Indeed, the condition (u0, ρ0, q0) ∈ Ξ
implies regularity of the original OCP 15. Hence, by Theorem 6.1, this problem has
a nonempty set of solutions. Let (u∗, ρ∗, q∗) be one of them. Then the following
inequality is obvious

J(u∗, ρ∗, q∗) ≤ J(u0, ρ0, q0), ∀ i ∈ N. (65)

On the other hand, by Proposition 1 (see property (iv)), we have (u∗, ρ∗, q∗) ∈ Ξεki

for every i ∈ N. Since
{

(uki,0, ρki,0, qki,0)
}
i∈N are the solutions to the corresponding

relaxed problems 56, it follows that

inf
(u,ρ,q)∈Ξεki

J(u, ρ, q) = J(uki,0, ρki,0, qki,0) ≤ J(u∗, ρ∗, q∗), ∀ i ∈ N. (66)

As a result, taking into account the relations 65 and 66, and the continuity
property 53 for the cost functional J with respect to the convergence 30–35, we



ON RELAXATION OF STATE CONSTRAINED OCP 517

finally get

inf
(u,ρ,q)∈Ξ

J(u, ρ, q) = J(u∗, ρ∗, q∗)
by 66

≥ lim sup
i→∞

J(uki,0, ρki,0, qki,0)

≥ lim inf
i→∞

J(uki,0, ρki,0, qki,0)
by 53 and 63

= J(u0, ρ0, q0)

by 65

≥ J(u∗, ρ∗, q∗).

Thus,

inf
(u,ρ,q)∈Ξ

J(u, ρ, q) = lim
i→∞

J(uki,0, ρki,0, qki,0) = J(u0, ρ0, q0),

and we arrive at the desired property 642. The proof is complete.

8. Final remarks. As was mentioned in the previous section, the main benefit of
the relaxed optimal control problems 56 comes from the fact that the Henig dilating
cones (Λj)ε(Dj) have a nonempty topological interior. Hence, it gives a possibility
to apply the Slater condition or the Robinson condition in order to characterize
the optimal solutions for state constrained OCP. On the other hand, this approach
provides nice convergence properties for the solutions of relaxed problems 56. How-
ever, as follows from Theorems 7.2 and 7.3, the most restrictive assumption deals
with the regularity of the relaxed problems 56 for all ε ∈ (0, δ). So, if we reject the
Hypothesis (A1), it becomes unclear, in general, whether the relaxed sets of admis-
sible solutions Ξε are nonempty for all ε↘ 0. In this case it makes sense to provide
further relaxation for each of Henig problems 56. In particular, using the methods
of vector-valued optimization theory, it can be shown that each of Henig problems
56 admits the existence of the so-called weakened approximate solution which can
be interpreted as the generalized solution to some vector optimization problem of
special form (for the details we refer to [7, 22]). In the meantime, the question of nu-
merical treatment of Henig relaxation for the PDE-ODE supply problems, however,
remains open in general.
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